Skip to main content
Top
Published in: Pediatric Nephrology 5/2014

01-05-2014 | Review

Bone metabolism in the fetus and neonate

Author: Christopher S. Kovacs

Published in: Pediatric Nephrology | Issue 5/2014

Login to get access

Abstract

During embryonic development most of the skeleton begins as a cartilaginous scaffold that is progressively resorbed and replaced by bone. Such endochondral bone development does not cease until the growth plates fuse during puberty. Growth and mineralization of the skeleton are dependent upon the adequate delivery of mineral. During fetal development, the placenta actively transports calcium, magnesium and phosphorus from the maternal circulation. After birth, the role of mineral transport is assumed by the intestines. The limited data currently available on fetal humans are largely based on cord blood samples from normal fetuses and pathological specimens from fetuses which died in utero or at birth. Consequently, much of our understanding of the regulation of fetal mineral and bone homeostasis comes from the study of animal fetuses that have been manipulated surgically, pharmacologically and genetically. Animal and human data indicate that fetal mineral homeostasis requires parathyroid hormone (PTH) and PTH-related protein—but not vitamin D/calcitriol, calcitonin or sex steroids. In the days to weeks after birth, intestinal calcium absorption becomes an active process, which necessitates that the infant depends upon vitamin D/calcitriol. However, even this postnatal function of calcitriol can be bypassed by increasing the calcium content of the diet or by administering calcium infusions.
Literature
1.
go back to reference Kovacs CS (2011) Fetal mineral homeostasis. In: Glorieux FH, Pettifor JM, Jüppner H (eds) Pediatric bone: Biology and diseases, 2nd edn. Elsevier/Academic Press, San Diego, pp 247–275 Kovacs CS (2011) Fetal mineral homeostasis. In: Glorieux FH, Pettifor JM, Jüppner H (eds) Pediatric bone: Biology and diseases, 2nd edn. Elsevier/Academic Press, San Diego, pp 247–275
2.
go back to reference Kovacs CS (2011) Fetus, Neonate and Infant. In: Feldman D, Pike WJ, Adams JS (eds) Vitamin D, 3rd edn. Academic, New York, pp 625–646CrossRef Kovacs CS (2011) Fetus, Neonate and Infant. In: Feldman D, Pike WJ, Adams JS (eds) Vitamin D, 3rd edn. Academic, New York, pp 625–646CrossRef
3.
go back to reference Kovacs CS (2012) The role of vitamin d in pregnancy and lactation: insights from animal models and clinical studies. Annu Rev Nutr 32:97–123PubMedCrossRef Kovacs CS (2012) The role of vitamin d in pregnancy and lactation: insights from animal models and clinical studies. Annu Rev Nutr 32:97–123PubMedCrossRef
4.
go back to reference Kovacs CS, Ho-Pao CL, Hunzelman JL, Lanske B, Fox J, Seidman JG, Seidman CE, Kronenberg HM (1998) Regulation of murine fetal–placental calcium metabolism by the calcium-sensing receptor. J Clin Invest 101:2812–2820PubMedCentralPubMedCrossRef Kovacs CS, Ho-Pao CL, Hunzelman JL, Lanske B, Fox J, Seidman JG, Seidman CE, Kronenberg HM (1998) Regulation of murine fetal–placental calcium metabolism by the calcium-sensing receptor. J Clin Invest 101:2812–2820PubMedCentralPubMedCrossRef
5.
go back to reference Kovacs CS, Woodland ML, Fudge NJ, Friel JK (2005) The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer. Am J Physiol Endocrinol Metab 289:E133–E144PubMedCrossRef Kovacs CS, Woodland ML, Fudge NJ, Friel JK (2005) The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer. Am J Physiol Endocrinol Metab 289:E133–E144PubMedCrossRef
6.
go back to reference Kovacs CS, Chafe LL, Woodland ML, McDonald KR, Fudge NJ, Wookey PJ (2002) Calcitropic gene expression suggests a role for intraplacental yolk sac in maternal-fetal calcium exchange. Am J Physiol Endocrinol Metab 282:E721–E732PubMed Kovacs CS, Chafe LL, Woodland ML, McDonald KR, Fudge NJ, Wookey PJ (2002) Calcitropic gene expression suggests a role for intraplacental yolk sac in maternal-fetal calcium exchange. Am J Physiol Endocrinol Metab 282:E721–E732PubMed
7.
go back to reference Suzuki Y, Kovacs CS, Takanaga H, Peng JB, Landowski CP, Hediger MA (2008) Calcium TRPV6 is involved in murine maternal–fetal calcium transport. J Bone Miner Res 23:1249–1256PubMedCentralPubMedCrossRef Suzuki Y, Kovacs CS, Takanaga H, Peng JB, Landowski CP, Hediger MA (2008) Calcium TRPV6 is involved in murine maternal–fetal calcium transport. J Bone Miner Res 23:1249–1256PubMedCentralPubMedCrossRef
8.
go back to reference Yang Y (2009) Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Expr 19:197–218PubMedCrossRef Yang Y (2009) Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Expr 19:197–218PubMedCrossRef
9.
go back to reference Simmonds CS, Karsenty G, Karaplis AC, Kovacs CS (2010) Parathyroid hormone regulates fetal–placental mineral homeostasis. J Bone Miner Res 25:594–605PubMedCrossRef Simmonds CS, Karsenty G, Karaplis AC, Kovacs CS (2010) Parathyroid hormone regulates fetal–placental mineral homeostasis. J Bone Miner Res 25:594–605PubMedCrossRef
10.
go back to reference Kovacs CS, Manley NR, Moseley JM, Martin TJ, Kronenberg HM (2001) Fetal parathyroids are not required to maintain placental calcium transport. J Clin Invest 107:1007–1015PubMedCentralPubMedCrossRef Kovacs CS, Manley NR, Moseley JM, Martin TJ, Kronenberg HM (2001) Fetal parathyroids are not required to maintain placental calcium transport. J Clin Invest 107:1007–1015PubMedCentralPubMedCrossRef
11.
go back to reference Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM (1996) Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 93:15233–15238PubMedCentralPubMedCrossRef Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM (1996) Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 93:15233–15238PubMedCentralPubMedCrossRef
12.
go back to reference Kovacs CS, Chafe LL, Fudge NJ, Friel JK, Manley NR (2001) PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 142:4983–4993PubMedCrossRef Kovacs CS, Chafe LL, Fudge NJ, Friel JK, Manley NR (2001) PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 142:4983–4993PubMedCrossRef
13.
go back to reference Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003PubMed Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003PubMed
14.
go back to reference Bond H, Dilworth MR, Baker B, Cowley E, Requena Jimenez A, Boyd RD, Husain SM, Ward BS, Sibley CP, Glazier JD (2008) Increased maternofetal calcium flux in parathyroid hormone-related protein-null mice. J Physiol 586:2015–2025PubMedCentralPubMedCrossRef Bond H, Dilworth MR, Baker B, Cowley E, Requena Jimenez A, Boyd RD, Husain SM, Ward BS, Sibley CP, Glazier JD (2008) Increased maternofetal calcium flux in parathyroid hormone-related protein-null mice. J Physiol 586:2015–2025PubMedCentralPubMedCrossRef
15.
go back to reference Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir EC, Broadus AE, Stewart AF (1996) Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 76:127–173PubMed Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC, Weir EC, Broadus AE, Stewart AF (1996) Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 76:127–173PubMed
16.
go back to reference Riddle RC, Macica CM, Clemens TL (2008) Vascular, cardiovascular, and neurologic actions of parathyroid-related protein. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology, 3rd edn. Academic, New York, pp 733–748CrossRef Riddle RC, Macica CM, Clemens TL (2008) Vascular, cardiovascular, and neurologic actions of parathyroid-related protein. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology, 3rd edn. Academic, New York, pp 733–748CrossRef
17.
go back to reference Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Indian hedgehog and parathyroid hormone-related protein regulate the rate of cartilage differentiation. Science 273:613–622PubMedCrossRef Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Indian hedgehog and parathyroid hormone-related protein regulate the rate of cartilage differentiation. Science 273:613–622PubMedCrossRef
18.
go back to reference Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648PubMedCrossRef Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648PubMedCrossRef
19.
go back to reference Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289PubMedCrossRef Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289PubMedCrossRef
20.
go back to reference Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize L, Ho C, Abou-Samra AB, Jüppner H, Segre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666PubMedCrossRef Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize L, Ho C, Abou-Samra AB, Jüppner H, Segre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666PubMedCrossRef
21.
go back to reference Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245PubMedCentralPubMedCrossRef Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245PubMedCentralPubMedCrossRef
22.
go back to reference Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, Pirro A, Kronenberg HM, Jüppner H (1997) Targeted expression of constitutively active PTH/PTHrP receptors delays endochondral bone formation and rescues PTHrP-less mice. Proc Natl Acad Sci USA 94:13689–13694PubMedCentralPubMedCrossRef Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, Pirro A, Kronenberg HM, Jüppner H (1997) Targeted expression of constitutively active PTH/PTHrP receptors delays endochondral bone formation and rescues PTHrP-less mice. Proc Natl Acad Sci USA 94:13689–13694PubMedCentralPubMedCrossRef
23.
go back to reference Lanske B, Divieti P, Kovacs CS, Pirro A, Landis WJ, Krane SM, Bringhurst FR, Kronenberg HM (1998) The parathyroid hormone/parathyroid hormone-related peptide receptor mediates actions of both ligands in murine bone. Endocrinology 139:5192–5204 Lanske B, Divieti P, Kovacs CS, Pirro A, Landis WJ, Krane SM, Bringhurst FR, Kronenberg HM (1998) The parathyroid hormone/parathyroid hormone-related peptide receptor mediates actions of both ligands in murine bone. Endocrinology 139:5192–5204
24.
go back to reference Miao D, He B, Jiang Y, Kobayashi T, Soroceanu MA, Zhao J, Su H, Tong X, Amizuka N, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC (2005) Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J Clin Invest 115:2402–2411PubMedCentralPubMedCrossRef Miao D, He B, Jiang Y, Kobayashi T, Soroceanu MA, Zhao J, Su H, Tong X, Amizuka N, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC (2005) Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J Clin Invest 115:2402–2411PubMedCentralPubMedCrossRef
25.
go back to reference Rubin LP, Kovacs CS, De Paepe ME, Tsai SW, Torday JS, Kronenberg HM (2004) Arrested pulmonary alveolar cytodifferentiation and defective surfactant synthesis in mice missing the gene for parathyroid hormone-related protein. Dev Dyn 230:278–289PubMedCrossRef Rubin LP, Kovacs CS, De Paepe ME, Tsai SW, Torday JS, Kronenberg HM (2004) Arrested pulmonary alveolar cytodifferentiation and defective surfactant synthesis in mice missing the gene for parathyroid hormone-related protein. Dev Dyn 230:278–289PubMedCrossRef
26.
go back to reference Klopocki E, Hennig BP, Dathe K, Koll R, de Ravel T, Baten E, Blom E, Gillerot Y, Weigel JF, Kruger G, Hiort O, Seemann P, Mundlos S (2010) Deletion and point mutations of PTHLH cause brachydactyly type E. Am J Hum Genet 86:434–439PubMedCentralPubMedCrossRef Klopocki E, Hennig BP, Dathe K, Koll R, de Ravel T, Baten E, Blom E, Gillerot Y, Weigel JF, Kruger G, Hiort O, Seemann P, Mundlos S (2010) Deletion and point mutations of PTHLH cause brachydactyly type E. Am J Hum Genet 86:434–439PubMedCentralPubMedCrossRef
27.
28.
go back to reference Farrugia W, de Gooyer T, Rice GE, Moseley JM, Wlodek ME (2000) Parathyroid hormone(1–34) and parathyroid hormone-related protein(1–34) stimulate calcium release from human syncytiotrophoblast basal membranes via a common receptor. J Endocrinol 166:689–695PubMedCrossRef Farrugia W, de Gooyer T, Rice GE, Moseley JM, Wlodek ME (2000) Parathyroid hormone(1–34) and parathyroid hormone-related protein(1–34) stimulate calcium release from human syncytiotrophoblast basal membranes via a common receptor. J Endocrinol 166:689–695PubMedCrossRef
29.
go back to reference Karaplis AC, He B, Nguyen MT, Young ID, Semeraro D, Ozawa H, Amizuka N (1998) Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology 139:5255–5258PubMedCrossRef Karaplis AC, He B, Nguyen MT, Young ID, Semeraro D, Ozawa H, Amizuka N (1998) Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chondrodysplasia. Endocrinology 139:5255–5258PubMedCrossRef
30.
go back to reference Oostra RJ, van der Harten JJ, Rijnders WP, Scott RJ, Young MP, Trump D (2000) Blomstrand osteochondrodysplasia: three novel cases and histological evidence for heterogeneity. Virchows Arch 436:28–35PubMedCrossRef Oostra RJ, van der Harten JJ, Rijnders WP, Scott RJ, Young MP, Trump D (2000) Blomstrand osteochondrodysplasia: three novel cases and histological evidence for heterogeneity. Virchows Arch 436:28–35PubMedCrossRef
31.
go back to reference McDonald KR, Fudge NJ, Woodrow JP, Friel JK, Hoff AO, Gagel RF, Kovacs CS (2004) Ablation of calcitonin/calcitonin gene related peptide-a impairs fetal magnesium but not calcium homeostasis. Am J Physiol Endocrinol Metab 287:E218–E226PubMedCrossRef McDonald KR, Fudge NJ, Woodrow JP, Friel JK, Hoff AO, Gagel RF, Kovacs CS (2004) Ablation of calcitonin/calcitonin gene related peptide-a impairs fetal magnesium but not calcium homeostasis. Am J Physiol Endocrinol Metab 287:E218–E226PubMedCrossRef
32.
go back to reference Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164:509–514PubMedCentralPubMedCrossRef Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164:509–514PubMedCentralPubMedCrossRef
33.
go back to reference Halloran BP, De Luca HF (1981) Effect of vitamin D deficiency on skeletal development during early growth in the rat. Arch Biochem Biophys 209:7–14PubMedCrossRef Halloran BP, De Luca HF (1981) Effect of vitamin D deficiency on skeletal development during early growth in the rat. Arch Biochem Biophys 209:7–14PubMedCrossRef
34.
go back to reference Miller SC, Halloran BP, DeLuca HF, Jee WS (1983) Studies on the role of vitamin D in early skeletal development, mineralization, and growth in rats. Calcif Tissue Int 35:455–460PubMedCrossRef Miller SC, Halloran BP, DeLuca HF, Jee WS (1983) Studies on the role of vitamin D in early skeletal development, mineralization, and growth in rats. Calcif Tissue Int 35:455–460PubMedCrossRef
35.
go back to reference Brommage R, DeLuca HF (1984) Placental transport of calcium and phosphorus is not regulated by vitamin D. Am J Physiol 246:F526–F529PubMed Brommage R, DeLuca HF (1984) Placental transport of calcium and phosphorus is not regulated by vitamin D. Am J Physiol 246:F526–F529PubMed
36.
go back to reference Lachenmaier-Currle U, Harmeyer J (1989) Placental transport of calcium and phosphorus in pigs. J Perinat Med 17:127–136PubMedCrossRef Lachenmaier-Currle U, Harmeyer J (1989) Placental transport of calcium and phosphorus in pigs. J Perinat Med 17:127–136PubMedCrossRef
37.
go back to reference Glazier JD, Mawer EB, Sibley CP (1995) Calbindin-D9K gene expression in rat chorioallantoic placenta is not regulated by 1,25-dihydroxyvitamin D3. Pediatr Res 37:720–725PubMedCrossRef Glazier JD, Mawer EB, Sibley CP (1995) Calbindin-D9K gene expression in rat chorioallantoic placenta is not regulated by 1,25-dihydroxyvitamin D3. Pediatr Res 37:720–725PubMedCrossRef
38.
go back to reference Marche P, Delorme A, Cuisinier-Gleizes P (1978) Intestinal and placental calcium-binding proteins in vitamin D-deprived or -supplemented rats. Life Sci 23:2555–2561PubMedCrossRef Marche P, Delorme A, Cuisinier-Gleizes P (1978) Intestinal and placental calcium-binding proteins in vitamin D-deprived or -supplemented rats. Life Sci 23:2555–2561PubMedCrossRef
39.
go back to reference Verhaeghe J, Thomasset M, Brehier A, Van Assche FA, Bouillon R (1988) 1,25(OH)2D3 and Ca-binding protein in fetal rats: relationship to the maternal vitamin D status. Am J Physiol 254:E505–E512PubMed Verhaeghe J, Thomasset M, Brehier A, Van Assche FA, Bouillon R (1988) 1,25(OH)2D3 and Ca-binding protein in fetal rats: relationship to the maternal vitamin D status. Am J Physiol 254:E505–E512PubMed
40.
go back to reference Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D (2001) Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98:7498–7503PubMedCentralPubMedCrossRef Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D (2001) Targeted ablation of the 25-hydroxyvitamin D 1alpha -hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98:7498–7503PubMedCentralPubMedCrossRef
41.
go back to reference Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141PubMed Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141PubMed
42.
go back to reference Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396PubMed Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396PubMed
43.
go back to reference Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835PubMedCentralPubMedCrossRef Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835PubMedCentralPubMedCrossRef
44.
go back to reference Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987PubMed Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987PubMed
45.
go back to reference Dardenne O, Prudhomme J, Hacking SA, Glorieux FH, St-Arnaud R (2003) Rescue of the pseudo-vitamin D deficiency rickets phenotype of CYP27B1-deficient mice by treatment with 1,25-dihydroxyvitamin D3: biochemical, histomorphometric, and biomechanical analyses. J Bone Miner Res 18:637–643PubMedCrossRef Dardenne O, Prudhomme J, Hacking SA, Glorieux FH, St-Arnaud R (2003) Rescue of the pseudo-vitamin D deficiency rickets phenotype of CYP27B1-deficient mice by treatment with 1,25-dihydroxyvitamin D3: biochemical, histomorphometric, and biomechanical analyses. J Bone Miner Res 18:637–643PubMedCrossRef
46.
go back to reference Maxwell JP, Miles LM (1925) Osteomalacia in China. J Obstet Gynaecol Br Empire 32:433–473CrossRef Maxwell JP, Miles LM (1925) Osteomalacia in China. J Obstet Gynaecol Br Empire 32:433–473CrossRef
47.
go back to reference Pereira GR, Zucker AH (1986) Nutritional deficiencies in the neonate. Clin Perinatol 13:175–189PubMed Pereira GR, Zucker AH (1986) Nutritional deficiencies in the neonate. Clin Perinatol 13:175–189PubMed
48.
go back to reference Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497PubMedCrossRef Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497PubMedCrossRef
49.
go back to reference Mohapatra A, Sankaranarayanan K, Kadam SS, Binoy S, Kanbur WA, Mondkar JA (2003) Congenital rickets. J Trop Pediatr 49:126–127PubMedCrossRef Mohapatra A, Sankaranarayanan K, Kadam SS, Binoy S, Kanbur WA, Mondkar JA (2003) Congenital rickets. J Trop Pediatr 49:126–127PubMedCrossRef
50.
go back to reference Innes AM, Seshia MM, Prasad C, Al Saif S, Friesen FR, Chudley AE, Reed M, Dilling LA, Haworth JC, Greenberg CR (2002) Congenital rickets caused by maternal vitamin D deficiency. Paediatr Child Health 7:455–458PubMedCentralPubMed Innes AM, Seshia MM, Prasad C, Al Saif S, Friesen FR, Chudley AE, Reed M, Dilling LA, Haworth JC, Greenberg CR (2002) Congenital rickets caused by maternal vitamin D deficiency. Paediatr Child Health 7:455–458PubMedCentralPubMed
51.
go back to reference Begum R, Coutinho ML, Dormandy TL, Yudkin S (1968) Maternal malabsorption presenting as congenital rickets. Lancet 1:1048–1052PubMedCrossRef Begum R, Coutinho ML, Dormandy TL, Yudkin S (1968) Maternal malabsorption presenting as congenital rickets. Lancet 1:1048–1052PubMedCrossRef
52.
go back to reference Congdon P, Horsman A, Kirby PA, Dibble J, Bashir T (1983) Mineral content of the forearms of babies born to Asian and white mothers. Br Med J (Clin Res Ed) 286:1233–1235CrossRef Congdon P, Horsman A, Kirby PA, Dibble J, Bashir T (1983) Mineral content of the forearms of babies born to Asian and white mothers. Br Med J (Clin Res Ed) 286:1233–1235CrossRef
53.
go back to reference Sann L, David L, Thomas A, Frederich A, Chapuy MC, Francois R (1976) Congenital hyperparathyroidism and vitamin D deficiency secondary to maternal hypoparathyroidism. Acta Paediatr Scand 65:381–385PubMedCrossRef Sann L, David L, Thomas A, Frederich A, Chapuy MC, Francois R (1976) Congenital hyperparathyroidism and vitamin D deficiency secondary to maternal hypoparathyroidism. Acta Paediatr Scand 65:381–385PubMedCrossRef
54.
go back to reference Weiler HA, Fitzpatrick-Wong SC, Schellenberg JM (2008) Bone mass in First Nations, Asian and white newborn infants. Growth Dev Aging 71:35–43PubMed Weiler HA, Fitzpatrick-Wong SC, Schellenberg JM (2008) Bone mass in First Nations, Asian and white newborn infants. Growth Dev Aging 71:35–43PubMed
55.
go back to reference Brooke OG, Brown IR, Bone CD, Carter ND, Cleeve HJ, Maxwell JD, Robinson VP, Winder SM (1980) Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J 280:751–754PubMedCentralPubMedCrossRef Brooke OG, Brown IR, Bone CD, Carter ND, Cleeve HJ, Maxwell JD, Robinson VP, Winder SM (1980) Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J 280:751–754PubMedCentralPubMedCrossRef
56.
go back to reference Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL (2011) Vitamin D supplementation during pregnancy: double blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res 26:2341–2357PubMedCentralPubMedCrossRef Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL (2011) Vitamin D supplementation during pregnancy: double blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res 26:2341–2357PubMedCentralPubMedCrossRef
57.
go back to reference Morley R, Carlin JB, Pasco JA, Wark JD (2006) Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab 91:906–912PubMedCrossRef Morley R, Carlin JB, Pasco JA, Wark JD (2006) Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab 91:906–912PubMedCrossRef
58.
go back to reference Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, Swaminathan R, Cooper C, Godfrey K (2010) Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 25:14–19PubMedCrossRef Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, Swaminathan R, Cooper C, Godfrey K (2010) Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 25:14–19PubMedCrossRef
59.
go back to reference Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O, Andersson S, Laitinen K, Lamberg-Allardt C (2010) Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 95:1749–1757PubMedCrossRef Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O, Andersson S, Laitinen K, Lamberg-Allardt C (2010) Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 95:1749–1757PubMedCrossRef
60.
go back to reference Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367:36–43PubMedCrossRef Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367:36–43PubMedCrossRef
61.
go back to reference Kovacs CS (2012) Fetal control of calcium and phosphate homeostasis—lessons from mouse models. In: Thakker RV, Whyte MP, Eisman JA, Igarashi T (eds) Genetics of bone biology and skeletal disease. Academic Press/Elsevier, San Diego, pp 205–220 Kovacs CS (2012) Fetal control of calcium and phosphate homeostasis—lessons from mouse models. In: Thakker RV, Whyte MP, Eisman JA, Igarashi T (eds) Genetics of bone biology and skeletal disease. Academic Press/Elsevier, San Diego, pp 205–220
Metadata
Title
Bone metabolism in the fetus and neonate
Author
Christopher S. Kovacs
Publication date
01-05-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 5/2014
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2461-4

Other articles of this Issue 5/2014

Pediatric Nephrology 5/2014 Go to the issue