Skip to main content
Top
Published in: Osteoporosis International 3/2009

01-03-2009 | Original Article

Bone mass and microarchitecture of irradiated and bone marrow-transplanted mice: influences of the donor strain

Authors: A. Dumas, M. Brigitte, M. F. Moreau, F. Chrétien, M. F. Baslé, D. Chappard

Published in: Osteoporosis International | Issue 3/2009

Login to get access

Abstract

Summary

Total body irradiation and bone marrow transplantation induced dramatic trabecular bone loss and cortical thickening in mice. Transplanted cells were engrafted in bone marrow, along trabeculae, and in periosteal and endosteal envelopes. None of the osteocytes were of donor origin. Bone microarchitecture of transplanted mice changed to tend toward the donor phenotype.

Introduction

Osteopenia and osteoporosis are complications of bone marrow transplants (BMT) attributed to related chemotherapy. However, the specific influence of total body irradiation (TBI) is unknown.

Methods

We investigated the effects of TBI and BMT on bone mass and microarchitecture by micro-CT. Eighteen C57Bl/6 (B6) mice receiving lethal TBI had a BMT with marrow cells from green fluorescent protein--transgenic-C57Bl/6 (GFP) mice. Transplanted (TGFPB6), B6, and GFP mice were euthanized 1, 3, and 6 months after BMT or at a related age.

Results

TGFPB6 presented a dramatic bone loss compared with B6 and did not restore their trabecular bone mass over time, despite a cortical thickening 6 months after BMT. Serum testosterone levels were not significantly reduced after BMT. During aging, GFP mice have less trabeculae, thicker cortices, but a narrower femoral shaft than B6 mice. From 3 months after BMT, cortical characteristics of TGFPB6 mice differed statistically from B6 mice and were identical to those of GFP mice. GFP+ cells were located along trabecular surfaces and in periosteal and endosteal envelopes, but none of the osteocytes expressed GFP.

Conclusion

Our findings suggest that engrafted cells did not restore the irradiation-induced trabecular bone loss, but reconstituted a marrow microenvironment and bone remodeling similar to those of the donor. The effects of irradiation and graft on bone remodeling differed between cortical and trabecular bone.
Literature
2.
go back to reference Sullivan KM, Parkman R, Walters MC (2000) Bone marrow transplantation for non-malignant disease. Hematology Am Soc Hematol Educ Program 319–338 Sullivan KM, Parkman R, Walters MC (2000) Bone marrow transplantation for non-malignant disease. Hematology Am Soc Hematol Educ Program 319–338
3.
go back to reference Horwitz EM, Prockop DJ, Gordon PL et al (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231PubMedCrossRef Horwitz EM, Prockop DJ, Gordon PL et al (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231PubMedCrossRef
4.
go back to reference Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogenic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222PubMedCrossRef Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogenic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222PubMedCrossRef
5.
go back to reference Aristei C, Tabilio A (1999) Total-body irradiation in the conditioning regimens for autologous stem cell transplantation in lymphoproliferative diseases. Oncologist 4:386–397PubMed Aristei C, Tabilio A (1999) Total-body irradiation in the conditioning regimens for autologous stem cell transplantation in lymphoproliferative diseases. Oncologist 4:386–397PubMed
7.
go back to reference Cohen A, Shane E (2003) Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 14:617–630PubMedCrossRef Cohen A, Shane E (2003) Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 14:617–630PubMedCrossRef
8.
go back to reference Kang MI, Lee WY, Oh KW et al (2000) The short-term changes of bone mineral metabolism following bone marrow transplantation. Bone 26:275–279PubMedCrossRef Kang MI, Lee WY, Oh KW et al (2000) The short-term changes of bone mineral metabolism following bone marrow transplantation. Bone 26:275–279PubMedCrossRef
9.
go back to reference Schulte C, Beelen DW, Schaefer UW, Mann K (2000) Bone loss in long-term survivors after transplantation of hematopoietic stem cells: a prospective study. Osteoporos Int 11:344–353PubMedCrossRef Schulte C, Beelen DW, Schaefer UW, Mann K (2000) Bone loss in long-term survivors after transplantation of hematopoietic stem cells: a prospective study. Osteoporos Int 11:344–353PubMedCrossRef
10.
go back to reference Weilbaecher KN (2000) Mechanisms of osteoporosis after hematopoietic cell transplantation. Biol Blood Marrow Transplant 6:165–174PubMedCrossRef Weilbaecher KN (2000) Mechanisms of osteoporosis after hematopoietic cell transplantation. Biol Blood Marrow Transplant 6:165–174PubMedCrossRef
11.
go back to reference Ebeling PR, Thomas DM, Erbas B, Hopper JL, Szer J, Grigg AP (1999) Mechanisms of bone loss following allogenic and autologous hemopoietic stem cell transplantation. J Bone Miner Res 14:342–350PubMedCrossRef Ebeling PR, Thomas DM, Erbas B, Hopper JL, Szer J, Grigg AP (1999) Mechanisms of bone loss following allogenic and autologous hemopoietic stem cell transplantation. J Bone Miner Res 14:342–350PubMedCrossRef
12.
go back to reference Li J, Kwong DL, Chan GC (2007) The effects of various irradiation doses on the growth and differentiation of marrow-derived human mesenchymal stromal cells. Pediatr Transplant 11:379–387PubMedCrossRef Li J, Kwong DL, Chan GC (2007) The effects of various irradiation doses on the growth and differentiation of marrow-derived human mesenchymal stromal cells. Pediatr Transplant 11:379–387PubMedCrossRef
13.
go back to reference Arnold M, Stas P, Kummermehr J, Schultz-Hector S, Trott KR (1998) Radiation-induced impairment of bone healing in the rat femur: effects of radiation dose, sequence and interval between surgery and irradiation. Radiother Oncol 48:259–265PubMedCrossRef Arnold M, Stas P, Kummermehr J, Schultz-Hector S, Trott KR (1998) Radiation-induced impairment of bone healing in the rat femur: effects of radiation dose, sequence and interval between surgery and irradiation. Radiother Oncol 48:259–265PubMedCrossRef
14.
go back to reference Kerschan-Schindl K, Mitterbauer M, Fureder W et al (2004) Bone metabolism in patients more than five years after bone marrow transplantation. Bone Marrow Transplant 34:491–496PubMedCrossRef Kerschan-Schindl K, Mitterbauer M, Fureder W et al (2004) Bone metabolism in patients more than five years after bone marrow transplantation. Bone Marrow Transplant 34:491–496PubMedCrossRef
15.
go back to reference Kananen K, Volin L, Tahtela R, Laitinen K, Ruutu T, Valimaki MJ (2002) Recovery of bone mass and normalization of bone turnover in long-term survivors of allogenic bone marrow transplantation. Bone Marrow Transplant 29:33–39PubMedCrossRef Kananen K, Volin L, Tahtela R, Laitinen K, Ruutu T, Valimaki MJ (2002) Recovery of bone mass and normalization of bone turnover in long-term survivors of allogenic bone marrow transplantation. Bone Marrow Transplant 29:33–39PubMedCrossRef
16.
go back to reference Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319PubMedCrossRef Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319PubMedCrossRef
17.
go back to reference Dreyfus PA, Chretien F, Chazaud B, Kirova Y et al (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol 164:773–779PubMed Dreyfus PA, Chretien F, Chazaud B, Kirova Y et al (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol 164:773–779PubMed
18.
go back to reference Parfitt AM, Drezner MK, Glorieux FG et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef Parfitt AM, Drezner MK, Glorieux FG et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef
19.
go back to reference Libouban H, Blouin S, Moreau MF, Basle MF, Audran M, Chappard D (2007) Effects of risedronate in a rat model of osteopenia due to orchidectomy and disuse: densitometric, histomorphometric and microtomographic studies. Micron DOI 10.1016/j.micron.2007.09.006 Libouban H, Blouin S, Moreau MF, Basle MF, Audran M, Chappard D (2007) Effects of risedronate in a rat model of osteopenia due to orchidectomy and disuse: densitometric, histomorphometric and microtomographic studies. Micron DOI 10.​1016/​j.​micron.​2007.​09.​006
20.
go back to reference Gandhi MK, Lekamwasam S, Inman I et al (2003) Significant and persistent loss of bone mineral density in the femoral neck after hematopoietic stem cell transplantation: long-term follow-up of a prospective study. Br J Hematol 121:462–468CrossRef Gandhi MK, Lekamwasam S, Inman I et al (2003) Significant and persistent loss of bone mineral density in the femoral neck after hematopoietic stem cell transplantation: long-term follow-up of a prospective study. Br J Hematol 121:462–468CrossRef
21.
go back to reference Buchs N, Helg C, Collao C et al (2001) Allogenic bone marrow transplantation is associated with a preferential femoral neck bone loss. Osteoporos Int 12:880–886PubMedCrossRef Buchs N, Helg C, Collao C et al (2001) Allogenic bone marrow transplantation is associated with a preferential femoral neck bone loss. Osteoporos Int 12:880–886PubMedCrossRef
22.
go back to reference Baek KH, Lee WY, Oh KW et al (2004) Changes in the serum growth factors and osteoprotegerin after bone marrow transplantation: impact on bone and mineral metabolism. J Clin Endocrinol Metab 89:1246–1254PubMedCrossRef Baek KH, Lee WY, Oh KW et al (2004) Changes in the serum growth factors and osteoprotegerin after bone marrow transplantation: impact on bone and mineral metabolism. J Clin Endocrinol Metab 89:1246–1254PubMedCrossRef
23.
go back to reference Grigg AP, Shuttleworth P, Reynolds J et al (2006) Pamidronate reduces bone loss after allogenic stem cell transplantation. J Clin Endocrinol Metab 91:3835–3843PubMedCrossRef Grigg AP, Shuttleworth P, Reynolds J et al (2006) Pamidronate reduces bone loss after allogenic stem cell transplantation. J Clin Endocrinol Metab 91:3835–3843PubMedCrossRef
24.
go back to reference Kananen K, Volin L, Laitinen K, Alfthan H, Ruutu T, Valimaki MJ (2005) Prevention of bone loss after allogenic stem cell transplantation by calcium, vitamin D, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metab 90:3877–3885PubMedCrossRef Kananen K, Volin L, Laitinen K, Alfthan H, Ruutu T, Valimaki MJ (2005) Prevention of bone loss after allogenic stem cell transplantation by calcium, vitamin D, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metab 90:3877–3885PubMedCrossRef
25.
go back to reference Quast U (2006) Whole body radiotherapy: a TBI-guideline. J Med Phys 31:5–12CrossRef Quast U (2006) Whole body radiotherapy: a TBI-guideline. J Med Phys 31:5–12CrossRef
26.
go back to reference Galotto M, Berisso G, Delfino L et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466PubMedCrossRef Galotto M, Berisso G, Delfino L et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466PubMedCrossRef
27.
28.
go back to reference Dickhut A, Schwerdtfeger R, Kuklick L et al (2005) Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann Hematol 84:722–727PubMedCrossRef Dickhut A, Schwerdtfeger R, Kuklick L et al (2005) Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann Hematol 84:722–727PubMedCrossRef
29.
go back to reference Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255PubMedCrossRef Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255PubMedCrossRef
30.
go back to reference Mosca JD, Hendricks JK, Buyaner D et al (2000) Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop Relat Res S71–S90 Mosca JD, Hendricks JK, Buyaner D et al (2000) Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop Relat Res S71–S90
31.
go back to reference Pereira RF, O’Hara MD, Laptev AV et al (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95:1142–1147PubMedCrossRef Pereira RF, O’Hara MD, Laptev AV et al (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95:1142–1147PubMedCrossRef
32.
go back to reference Dominici M, Pritchard C, Garlits JE, Hofmann TJ, Persons DA, Horwitz EM (2004) Hematopoietic cells and osteoblasts are derived from a common marrow progenitor after bone marrow transplantation. Proc Natl Acad Sci USA 101:11761–11766PubMedCrossRef Dominici M, Pritchard C, Garlits JE, Hofmann TJ, Persons DA, Horwitz EM (2004) Hematopoietic cells and osteoblasts are derived from a common marrow progenitor after bone marrow transplantation. Proc Natl Acad Sci USA 101:11761–11766PubMedCrossRef
33.
go back to reference Wang L, Liu Y, Kalajzic Z, Jiang X, Rowe DW (2005) Heterogeneity of engrafted bone-lining cells after systemic and local transplantation. Blood 106:3650–3657PubMedCrossRef Wang L, Liu Y, Kalajzic Z, Jiang X, Rowe DW (2005) Heterogeneity of engrafted bone-lining cells after systemic and local transplantation. Blood 106:3650–3657PubMedCrossRef
34.
go back to reference Olmsted-Davis EA, Gugala Z, Camargo F et al (2003) Primitive adult hematopoietic stem cells can function as osteoblast precursors. Proc Natl Acad Sci USA 100:15877–15882PubMedCrossRef Olmsted-Davis EA, Gugala Z, Camargo F et al (2003) Primitive adult hematopoietic stem cells can function as osteoblast precursors. Proc Natl Acad Sci USA 100:15877–15882PubMedCrossRef
35.
go back to reference Hou Z, Nguyen Q, Frenkel Bet al (1999) Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci USA 96:7294–7299PubMedCrossRef Hou Z, Nguyen Q, Frenkel Bet al (1999) Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci USA 96:7294–7299PubMedCrossRef
36.
go back to reference Nilsson SK, Dooner MS, Weier HU et al (1999) Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med 189:729–734PubMedCrossRef Nilsson SK, Dooner MS, Weier HU et al (1999) Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med 189:729–734PubMedCrossRef
37.
go back to reference Imasawa T, Utsunomiya Y, Kawamura T et al (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409PubMed Imasawa T, Utsunomiya Y, Kawamura T et al (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409PubMed
38.
go back to reference Fukuda K, Fujita J (2005) Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int 68:1940–1943PubMedCrossRef Fukuda K, Fujita J (2005) Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int 68:1940–1943PubMedCrossRef
39.
go back to reference Ono K, Takii T, Onozaki K, Ikawa M, Okabe M, Sawada M (1999) Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem Biophys Res Commun 262:610–614PubMedCrossRef Ono K, Takii T, Onozaki K, Ikawa M, Okabe M, Sawada M (1999) Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem Biophys Res Commun 262:610–614PubMedCrossRef
40.
go back to reference Hayakawa J, Migita M, Ueda T, Shimada T, Fukunaga Y (2003) Generation of a chimeric mouse reconstituted with green fluorescent protein-positive bone marrow cells: a useful model for studying the behavior of bone marrow cells in regeneration in vivo. Int J Hematol 77:456–462PubMedCrossRef Hayakawa J, Migita M, Ueda T, Shimada T, Fukunaga Y (2003) Generation of a chimeric mouse reconstituted with green fluorescent protein-positive bone marrow cells: a useful model for studying the behavior of bone marrow cells in regeneration in vivo. Int J Hematol 77:456–462PubMedCrossRef
41.
go back to reference Peranteau WH, Hayashi S, Hsieh M, Shaaban AF, Flake AW (2002) High-level allogenic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood 100:2225–2234PubMedCrossRef Peranteau WH, Hayashi S, Hsieh M, Shaaban AF, Flake AW (2002) High-level allogenic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood 100:2225–2234PubMedCrossRef
42.
go back to reference Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells. Biochem Biophys Res Commun 260:712–717PubMedCrossRef Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells. Biochem Biophys Res Commun 260:712–717PubMedCrossRef
43.
go back to reference Yang WS, Ko JK, Park SO, Choi HY, Kim YN, Kim CW (2005) C-terminal region of Bfl-1 induces cell death that accompanies caspase activation when fused with GFP. J Cell Biochem 94:1234–1247PubMedCrossRef Yang WS, Ko JK, Park SO, Choi HY, Kim YN, Kim CW (2005) C-terminal region of Bfl-1 induces cell death that accompanies caspase activation when fused with GFP. J Cell Biochem 94:1234–1247PubMedCrossRef
44.
go back to reference Mak GW, Wong CH, Tsui SK (2007) Green fluorescent protein induces the secretion of inflammatory cytokine interleukin-6 in muscle cells. Anal Biochem 362:296–298PubMedCrossRef Mak GW, Wong CH, Tsui SK (2007) Green fluorescent protein induces the secretion of inflammatory cytokine interleukin-6 in muscle cells. Anal Biochem 362:296–298PubMedCrossRef
45.
go back to reference De Benedetti F, Rucci N, Del Fattore A et al (2006) Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54:3551–3563PubMedCrossRef De Benedetti F, Rucci N, Del Fattore A et al (2006) Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54:3551–3563PubMedCrossRef
46.
go back to reference Bianco P, Kuznetsov SA, Riminucci M, Fisher LW, Spiegel AM, Robey PG (1998) Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells. J Clin Invest 101:1737–1744PubMedCrossRef Bianco P, Kuznetsov SA, Riminucci M, Fisher LW, Spiegel AM, Robey PG (1998) Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells. J Clin Invest 101:1737–1744PubMedCrossRef
47.
go back to reference Ueda Y, Inaba M, Takada K et al (2007) Induction of senile osteoporosis in normal mice by intra-bone marrow-bone marrow transplantation from osteoporosis-prone mice. Stem Cells 25:1356–1363PubMedCrossRef Ueda Y, Inaba M, Takada K et al (2007) Induction of senile osteoporosis in normal mice by intra-bone marrow-bone marrow transplantation from osteoporosis-prone mice. Stem Cells 25:1356–1363PubMedCrossRef
Metadata
Title
Bone mass and microarchitecture of irradiated and bone marrow-transplanted mice: influences of the donor strain
Authors
A. Dumas
M. Brigitte
M. F. Moreau
F. Chrétien
M. F. Baslé
D. Chappard
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 3/2009
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-008-0658-3

Other articles of this Issue 3/2009

Osteoporosis International 3/2009 Go to the issue