Skip to main content
Top
Published in: Angiogenesis 2/2016

Open Access 01-04-2016 | Review Paper

Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms

Authors: Fan Gao, Huiyuan Hou, Hongliang Liang, Robert N. Weinreb, Haiyan Wang, Yusheng Wang

Published in: Angiogenesis | Issue 2/2016

Login to get access

Abstract

Ocular neovascularization often leads to severe vision loss. The role of bone marrow-derived cells (BMCs) in the development of ocular neovascularization, and its significance, is increasingly being recognized. In this review, we discuss their contribution and the potential mechanisms that mediate the effect of BMCs on the progression of ocular neovascularization. The sequence of events by which BMCs participate in ocular neovascularization can be roughly divided into four phases, i.e., mobilization, migration, adhesion and differentiation. This process is delicately regulated and liable to be affected by multiple factors. Cytokines such as vascular endothelial growth factor, granulocyte colony-stimulating factor and erythropoietin are involved in the mobilization of BMCs. Studies have also demonstrated a key role of cytokines such as stromal cell-derived factor-1, tumor necrosis factor-α, as well as vascular endothelial growth factor, in regulating the migration of BMCs. The adhesion of BMCs is mainly regulated by vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and vascular endothelial cadherin. However, the mechanisms regulating the differentiation of BMCs are largely unknown at present. In addition, BMCs secrete cytokines that interact with the microenvironment of ocular neovascularization; their contribution to ocular neovascularization, especially choroidal neovascularization, can be aggravated by several risk factors. An extensive regulatory network is thought to modulate the role of BMCs in the development of ocular neovascularization. A comprehensive understanding of the involved mechanisms will help in the development of novel therapeutic strategies related to BMCs. In this review, we have limited the discussion to the recent progress in this field, especially the research conducted at our laboratory.
Literature
1.
go back to reference Hou HY, Liang HL, Wang YS (2011) Bone marrow-derived cells in neovascular age-related macular degeneration: contribution and potential application. Ophthalmic Res 45(1):1–4. doi:10.1159/000313983 CrossRefPubMed Hou HY, Liang HL, Wang YS (2011) Bone marrow-derived cells in neovascular age-related macular degeneration: contribution and potential application. Ophthalmic Res 45(1):1–4. doi:10.​1159/​000313983 CrossRefPubMed
8.
go back to reference Shi YY, Wang YS, Zhang ZX, Cai Y, Zhou J, Hou HY, van Rooijen N (2011) Monocyte/macrophages promote vasculogenesis in choroidal neovascularization in mice by stimulating SDF-1 expression in RPE cells. Graefes Arch Clin Exp Ophthalmol 249(11):1667–1679. doi:10.1007/s00417-011-1699-4 CrossRefPubMed Shi YY, Wang YS, Zhang ZX, Cai Y, Zhou J, Hou HY, van Rooijen N (2011) Monocyte/macrophages promote vasculogenesis in choroidal neovascularization in mice by stimulating SDF-1 expression in RPE cells. Graefes Arch Clin Exp Ophthalmol 249(11):1667–1679. doi:10.​1007/​s00417-011-1699-4 CrossRefPubMed
11.
go back to reference Bourghardt Peebo B, Fagerholm P, Traneus-Rockert C, Lagali N (2011) Time-lapse in vivo imaging of corneal angiogenesis: the role of inflammatory cells in capillary sprouting. Invest Ophthalmol Vis Sci 52(6):3060–3068. doi:10.1167/iovs.10-6101 CrossRefPubMed Bourghardt Peebo B, Fagerholm P, Traneus-Rockert C, Lagali N (2011) Time-lapse in vivo imaging of corneal angiogenesis: the role of inflammatory cells in capillary sprouting. Invest Ophthalmol Vis Sci 52(6):3060–3068. doi:10.​1167/​iovs.​10-6101 CrossRefPubMed
13.
go back to reference Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438. doi:10.1038/7434 CrossRefPubMed Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438. doi:10.​1038/​7434 CrossRefPubMed
14.
go back to reference Kirchmair R, Egger M, Walter DH, Eisterer W, Niederwanger A, Woell E, Nagl M, Pedrini M, Murayama T, Frauscher S, Hanley A, Silver M, Brodmann M, Sturm W, Fischer-Colbrie R, Losordo DW, Patsch JR, Schratzberger P (2004) Secretoneurin, an angiogenic neuropeptide, induces postnatal vasculogenesis. Circulation 110(9):1121–1127. doi:10.1161/01.CIR.0000139884.81390.56 CrossRefPubMed Kirchmair R, Egger M, Walter DH, Eisterer W, Niederwanger A, Woell E, Nagl M, Pedrini M, Murayama T, Frauscher S, Hanley A, Silver M, Brodmann M, Sturm W, Fischer-Colbrie R, Losordo DW, Patsch JR, Schratzberger P (2004) Secretoneurin, an angiogenic neuropeptide, induces postnatal vasculogenesis. Circulation 110(9):1121–1127. doi:10.​1161/​01.​CIR.​0000139884.​81390.​56 CrossRefPubMed
15.
go back to reference Han JK, Lee HS, Yang HM, Hur J, Jun SI, Kim JY, Cho CH, Koh GY, Peters JM, Park KW, Cho HJ, Lee HY, Kang HJ, Oh BH, Park YB, Kim HS (2008) Peroxisome proliferator-activated receptor-delta agonist enhances vasculogenesis by regulating endothelial progenitor cells through genomic and nongenomic activations of the phosphatidylinositol 3-kinase/Akt pathway. Circulation 118(10):1021–1033. doi:10.1161/CIRCULATIONAHA.108.777169 CrossRefPubMed Han JK, Lee HS, Yang HM, Hur J, Jun SI, Kim JY, Cho CH, Koh GY, Peters JM, Park KW, Cho HJ, Lee HY, Kang HJ, Oh BH, Park YB, Kim HS (2008) Peroxisome proliferator-activated receptor-delta agonist enhances vasculogenesis by regulating endothelial progenitor cells through genomic and nongenomic activations of the phosphatidylinositol 3-kinase/Akt pathway. Circulation 118(10):1021–1033. doi:10.​1161/​CIRCULATIONAHA.​108.​777169 CrossRefPubMed
17.
go back to reference Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8(6):607–612. doi:10.1038/nm0602-607 CrossRefPubMed Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8(6):607–612. doi:10.​1038/​nm0602-607 CrossRefPubMed
18.
go back to reference Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8(9):1004–1010. doi:10.1038/nm744 CrossRefPubMed Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8(9):1004–1010. doi:10.​1038/​nm744 CrossRefPubMed
19.
go back to reference Shen J, Xie B, Dong A, Swaim M, Hackett SF, Campochiaro PA (2007) In vivo immunostaining demonstrates macrophages associate with growing and regressing vessels. Invest Ophthalmol Vis Sci 48(9):4335–4341. doi:10.1167/iovs.07-0113 CrossRefPubMed Shen J, Xie B, Dong A, Swaim M, Hackett SF, Campochiaro PA (2007) In vivo immunostaining demonstrates macrophages associate with growing and regressing vessels. Invest Ophthalmol Vis Sci 48(9):4335–4341. doi:10.​1167/​iovs.​07-0113 CrossRefPubMed
20.
go back to reference Kramerov AA, Saghizadeh M, Caballero S, Shaw LC, Li Calzi S, Bretner M, Montenarh M, Pinna LA, Grant MB, Ljubimov AV (2008) Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol Cell Biochem 316(1–2):177–186. doi:10.1007/s11010-008-9831-4 CrossRefPubMedPubMedCentral Kramerov AA, Saghizadeh M, Caballero S, Shaw LC, Li Calzi S, Bretner M, Montenarh M, Pinna LA, Grant MB, Ljubimov AV (2008) Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Mol Cell Biochem 316(1–2):177–186. doi:10.​1007/​s11010-008-9831-4 CrossRefPubMedPubMedCentral
22.
go back to reference Zou H, Otani A, Oishi A, Yodoi Y, Kameda T, Kojima H, Yoshimura N (2010) Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice. Biochem Biophys Res Commun 391(2):1268–1273. doi:10.1016/j.bbrc.2009.12.057 CrossRefPubMed Zou H, Otani A, Oishi A, Yodoi Y, Kameda T, Kojima H, Yoshimura N (2010) Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice. Biochem Biophys Res Commun 391(2):1268–1273. doi:10.​1016/​j.​bbrc.​2009.​12.​057 CrossRefPubMed
24.
go back to reference Ishikawa K, Yoshida S, Nakao S, Sassa Y, Asato R, Kohno R, Arima M, Kita T, Yoshida A, Ohuchida K, Ishibashi T (2012) Bone marrow-derived monocyte lineage cells recruited by MIP-1beta promote physiological revascularization in mouse model of oxygen-induced retinopathy. Lab Invest 92(1):91–101. doi:10.1038/labinvest.2011.141 CrossRefPubMed Ishikawa K, Yoshida S, Nakao S, Sassa Y, Asato R, Kohno R, Arima M, Kita T, Yoshida A, Ohuchida K, Ishibashi T (2012) Bone marrow-derived monocyte lineage cells recruited by MIP-1beta promote physiological revascularization in mouse model of oxygen-induced retinopathy. Lab Invest 92(1):91–101. doi:10.​1038/​labinvest.​2011.​141 CrossRefPubMed
27.
go back to reference Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL (2006) The presence of AC133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest Ophthalmol Vis Sci 47(4):1642–1645. doi:10.1167/iovs.05-0779 CrossRefPubMed Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL (2006) The presence of AC133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest Ophthalmol Vis Sci 47(4):1642–1645. doi:10.​1167/​iovs.​05-0779 CrossRefPubMed
28.
go back to reference Sasahara M, Otani A, Yodoi Y, Gotoh N, Kameda T, Yoshimura N (2009) Circulating hematopoietic stem cells in patients with choroidal neovascularization secondary to pathologic myopia. Eye 23(3):718–726. doi:10.1038/eye.2008.192 CrossRefPubMed Sasahara M, Otani A, Yodoi Y, Gotoh N, Kameda T, Yoshimura N (2009) Circulating hematopoietic stem cells in patients with choroidal neovascularization secondary to pathologic myopia. Eye 23(3):718–726. doi:10.​1038/​eye.​2008.​192 CrossRefPubMed
29.
30.
go back to reference Yodoi Y, Sasahara M, Kameda T, Yoshimura N, Otani A (2007) Circulating hematopoietic stem cells in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 48(12):5464–5472. doi:10.1167/iovs.07-0093 CrossRefPubMed Yodoi Y, Sasahara M, Kameda T, Yoshimura N, Otani A (2007) Circulating hematopoietic stem cells in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 48(12):5464–5472. doi:10.​1167/​iovs.​07-0093 CrossRefPubMed
31.
go back to reference Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4914–4919CrossRefPubMed Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4914–4919CrossRefPubMed
32.
go back to reference Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4908–4913CrossRefPubMed Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4908–4913CrossRefPubMed
33.
go back to reference Espinosa-Heidmann DG, Reinoso MA, Pina Y, Csaky KG, Caicedo A, Cousins SW (2005) Quantitative enumeration of vascular smooth muscle cells and endothelial cells derived from bone marrow precursors in experimental choroidal neovascularization. Exp Eye Res 80(3):369–378. doi:10.1016/j.exer.2004.10.005 CrossRefPubMed Espinosa-Heidmann DG, Reinoso MA, Pina Y, Csaky KG, Caicedo A, Cousins SW (2005) Quantitative enumeration of vascular smooth muscle cells and endothelial cells derived from bone marrow precursors in experimental choroidal neovascularization. Exp Eye Res 80(3):369–378. doi:10.​1016/​j.​exer.​2004.​10.​005 CrossRefPubMed
34.
go back to reference Sengupta N, Caballero S, Mames RN, Timmers AM, Saban D, Grant MB (2005) Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci 46(1):343–348. doi:10.1167/iovs.04-0153 CrossRefPubMed Sengupta N, Caballero S, Mames RN, Timmers AM, Saban D, Grant MB (2005) Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci 46(1):343–348. doi:10.​1167/​iovs.​04-0153 CrossRefPubMed
35.
go back to reference Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30(8):967–972CrossRefPubMed Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30(8):967–972CrossRefPubMed
36.
37.
40.
go back to reference Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP, Ganser A, Drexler H, Wollert KC (2008) Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 29(23):2851–2858. doi:10.1093/eurheartj/ehn456 CrossRefPubMed Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP, Ganser A, Drexler H, Wollert KC (2008) Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 29(23):2851–2858. doi:10.​1093/​eurheartj/​ehn456 CrossRefPubMed
41.
go back to reference Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K, Yokoi K, Hatara MC, Lauer T, Aslam S, Gong YY, Xiao WH, Khu NH, Thut C, Campochiaro PA (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J 21(12):3219–3230. doi:10.1096/fj.06-7359com CrossRefPubMed Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K, Yokoi K, Hatara MC, Lauer T, Aslam S, Gong YY, Xiao WH, Khu NH, Thut C, Campochiaro PA (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J 21(12):3219–3230. doi:10.​1096/​fj.​06-7359com CrossRefPubMed
43.
go back to reference Ripa RS (2012) Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease. Dan Med J 59(3):B4411PubMed Ripa RS (2012) Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease. Dan Med J 59(3):B4411PubMed
44.
go back to reference Westenbrink BD, Lipsic E, van der Meer P, van der Harst P, Oeseburg H, Du Marchie Sarvaas GJ, Koster J, Voors AA, van Veldhuisen DJ, van Gilst WH, Schoemaker RG (2007) Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 28(16):2018–2027. doi:10.1093/eurheartj/ehm177 CrossRefPubMed Westenbrink BD, Lipsic E, van der Meer P, van der Harst P, Oeseburg H, Du Marchie Sarvaas GJ, Koster J, Voors AA, van Veldhuisen DJ, van Gilst WH, Schoemaker RG (2007) Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 28(16):2018–2027. doi:10.​1093/​eurheartj/​ehm177 CrossRefPubMed
47.
48.
go back to reference Zhang ZX, Wang YS, Shi YY, Hou HY, Zhang C, Cai Y, Dou GR, Yao LB, Li FY (2011) Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model. Curr Eye Res 36(9):838–849. doi:10.3109/02713683.2011.593107 CrossRefPubMed Zhang ZX, Wang YS, Shi YY, Hou HY, Zhang C, Cai Y, Dou GR, Yao LB, Li FY (2011) Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model. Curr Eye Res 36(9):838–849. doi:10.​3109/​02713683.​2011.​593107 CrossRefPubMed
49.
go back to reference Wang J, Ohno-Matsui K, Nakahama K, Okamoto A, Yoshida T, Shimada N, Mochizuki M, Morita I (2011) Amyloid beta enhances migration of endothelial progenitor cells by upregulating CX3CR1 in response to fractalkine, which may be associated with development of choroidal neovascularization. Arterioscler Thromb Vasc Biol 31(7):e11–e18. doi:10.1161/ATVBAHA.110.215517 CrossRefPubMed Wang J, Ohno-Matsui K, Nakahama K, Okamoto A, Yoshida T, Shimada N, Mochizuki M, Morita I (2011) Amyloid beta enhances migration of endothelial progenitor cells by upregulating CX3CR1 in response to fractalkine, which may be associated with development of choroidal neovascularization. Arterioscler Thromb Vasc Biol 31(7):e11–e18. doi:10.​1161/​ATVBAHA.​110.​215517 CrossRefPubMed
50.
go back to reference Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168(6):1848–1860CrossRefPubMedPubMedCentral Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168(6):1848–1860CrossRefPubMedPubMedCentral
51.
go back to reference Semkova I, Muether PS, Kuebbeler M, Meyer KL, Kociok N, Joussen AM (2011) Recruitment of blood-derived inflammatory cells mediated via tumor necrosis factor-alpha receptor 1b exacerbates choroidal neovascularization. Invest Ophthalmol Vis Sci 52(9):6101–6108. doi:10.1167/iovs.10-5996 CrossRefPubMed Semkova I, Muether PS, Kuebbeler M, Meyer KL, Kociok N, Joussen AM (2011) Recruitment of blood-derived inflammatory cells mediated via tumor necrosis factor-alpha receptor 1b exacerbates choroidal neovascularization. Invest Ophthalmol Vis Sci 52(9):6101–6108. doi:10.​1167/​iovs.​10-5996 CrossRefPubMed
52.
go back to reference Lecomte J, Louis K, Detry B, Blacher S, Lambert V, Bekaert S, Munaut C, Paupert J, Blaise P, Foidart JM, Rakic JM, Krane SM, Noel A (2011) Bone marrow-derived mesenchymal cells and MMP13 contribute to experimental choroidal neovascularization. Cell Mol Life Sci 68(4):677–686. doi:10.1007/s00018-010-0476-6 CrossRefPubMed Lecomte J, Louis K, Detry B, Blacher S, Lambert V, Bekaert S, Munaut C, Paupert J, Blaise P, Foidart JM, Rakic JM, Krane SM, Noel A (2011) Bone marrow-derived mesenchymal cells and MMP13 contribute to experimental choroidal neovascularization. Cell Mol Life Sci 68(4):677–686. doi:10.​1007/​s00018-010-0476-6 CrossRefPubMed
53.
54.
go back to reference Yin T, Ma X, Zhao L, Cheng K, Wang H (2008) Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 18(7):792–799. doi:10.1038/cr.2008.69 CrossRefPubMed Yin T, Ma X, Zhao L, Cheng K, Wang H (2008) Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 18(7):792–799. doi:10.​1038/​cr.​2008.​69 CrossRefPubMed
55.
go back to reference Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114(6):765–774. doi:10.1172/JCI21686 CrossRefPubMedPubMedCentral Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114(6):765–774. doi:10.​1172/​JCI21686 CrossRefPubMedPubMedCentral
58.
go back to reference Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T (2008) Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation 118(2):157–165. doi:10.1161/CIRCULATIONAHA.107.754978 CrossRefPubMed Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T (2008) Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation 118(2):157–165. doi:10.​1161/​CIRCULATIONAHA.​107.​754978 CrossRefPubMed
59.
go back to reference Dou GR, Wang YC, Hu XB, Hou LH, Wang CM, Xu JF, Wang YS, Liang YM, Yao LB, Yang AG, Han H (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J 22(5):1606–1617. doi:10.1096/fj.07-9998com CrossRefPubMed Dou GR, Wang YC, Hu XB, Hou LH, Wang CM, Xu JF, Wang YS, Liang YM, Yao LB, Yang AG, Han H (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J 22(5):1606–1617. doi:10.​1096/​fj.​07-9998com CrossRefPubMed
60.
go back to reference Cai Y, Li X, Wang YS, Shi YY, Ye Z, Yang GD, Dou GR, Hou HY, Yang N, Cao XR, Lu ZF (2014) Hyperglycemia promotes vasculogenesis in choroidal neovascularization in diabetic mice by stimulating VEGF and SDF-1 expression in retinal pigment epithelial cells. Exp Eye Res 123:87–96. doi:10.1016/j.exer.2014.04.012 CrossRefPubMed Cai Y, Li X, Wang YS, Shi YY, Ye Z, Yang GD, Dou GR, Hou HY, Yang N, Cao XR, Lu ZF (2014) Hyperglycemia promotes vasculogenesis in choroidal neovascularization in diabetic mice by stimulating VEGF and SDF-1 expression in retinal pigment epithelial cells. Exp Eye Res 123:87–96. doi:10.​1016/​j.​exer.​2014.​04.​012 CrossRefPubMed
61.
go back to reference Jost M, Maillard C, Lecomte J, Lambert V, Tjwa M, Blaise P, Alvarez Gonzalez ML, Bajou K, Blacher S, Motte P, Humblet C, Defresne MP, Thiry M, Frankenne F, Gothot A, Carmeliet P, Rakic JM, Foidart JM, Noel A (2007) Tumoral and choroidal vascularization: differential cellular mechanisms involving plasminogen activator inhibitor type I. Am J Pathol 171(4):1369–1380. doi:10.2353/ajpath.2007.070074 CrossRefPubMedPubMedCentral Jost M, Maillard C, Lecomte J, Lambert V, Tjwa M, Blaise P, Alvarez Gonzalez ML, Bajou K, Blacher S, Motte P, Humblet C, Defresne MP, Thiry M, Frankenne F, Gothot A, Carmeliet P, Rakic JM, Foidart JM, Noel A (2007) Tumoral and choroidal vascularization: differential cellular mechanisms involving plasminogen activator inhibitor type I. Am J Pathol 171(4):1369–1380. doi:10.​2353/​ajpath.​2007.​070074 CrossRefPubMedPubMedCentral
73.
go back to reference Espinosa-Heidmann DG, Suner I, Hernandez EP, Frazier WD, Csaky KG, Cousins SW (2002) Age as an independent risk factor for severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43(5):1567–1573PubMed Espinosa-Heidmann DG, Suner I, Hernandez EP, Frazier WD, Csaky KG, Cousins SW (2002) Age as an independent risk factor for severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43(5):1567–1573PubMed
74.
go back to reference Suner IJ, Espinosa-Heidmann DG, Marin-Castano ME, Hernandez EP, Pereira-Simon S, Cousins SW (2004) Nicotine increases size and severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 45(1):311–317CrossRefPubMed Suner IJ, Espinosa-Heidmann DG, Marin-Castano ME, Hernandez EP, Pereira-Simon S, Cousins SW (2004) Nicotine increases size and severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 45(1):311–317CrossRefPubMed
75.
go back to reference Espinosa-Heidmann DG, Malek G, Mettu PS, Caicedo A, Saloupis P, Gach S, Dunnon AK, Hu P, Spiga MG, Cousins SW (2013) Bone marrow transplantation transfers age-related susceptibility to neovascular remodeling in murine laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54(12):7439–7449. doi:10.1167/iovs.13-12546 CrossRefPubMedPubMedCentral Espinosa-Heidmann DG, Malek G, Mettu PS, Caicedo A, Saloupis P, Gach S, Dunnon AK, Hu P, Spiga MG, Cousins SW (2013) Bone marrow transplantation transfers age-related susceptibility to neovascular remodeling in murine laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54(12):7439–7449. doi:10.​1167/​iovs.​13-12546 CrossRefPubMedPubMedCentral
80.
go back to reference Lee P, Wang CC, Adamis AP (1998) Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 43(3):245–269CrossRefPubMed Lee P, Wang CC, Adamis AP (1998) Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 43(3):245–269CrossRefPubMed
82.
go back to reference Ahn SJ, Park KH, Woo SJ (2015) Subfoveal choroidal thickness changes following anti-vascular endothelial growth factor therapy in myopic choroidal neovascularization. Invest Ophthalmol Vis Sci 56(10):5794–5800. doi:10.1167/iovs.14-16006 CrossRefPubMed Ahn SJ, Park KH, Woo SJ (2015) Subfoveal choroidal thickness changes following anti-vascular endothelial growth factor therapy in myopic choroidal neovascularization. Invest Ophthalmol Vis Sci 56(10):5794–5800. doi:10.​1167/​iovs.​14-16006 CrossRefPubMed
Metadata
Title
Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms
Authors
Fan Gao
Huiyuan Hou
Hongliang Liang
Robert N. Weinreb
Haiyan Wang
Yusheng Wang
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2016
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9497-6

Other articles of this Issue 2/2016

Angiogenesis 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine