Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2020

01-12-2020 | Bone Defect | Research article

Mid-term results of revision surgery using double-trabecular metal cups alone or combined with impaction bone grafting for complex acetabular defects

Authors: Xianghong Zhang, Zhihong Li, Wanchun Wang, Tang Liu, Weiqiu Peng

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2020

Login to get access

Abstract

Background

Revision surgery for complex acetabular defects is still technically challenging. In this study, we discussed and compared the clinical and radiological outcomes of revision surgery between two methods using double-trabecular metal (TM) cups alone or combined with impacting bone grafting (IBG).

Methods

The records of 18 patients (18 hips) who underwent revision surgery using double-trabecular metal (double-TM) cups between 2008 and 2016 were retrospectively reviewed. All the patients were diagnosed with Paprosky III acetabular defects. The acetabular defects were reconstructed by double-TM cups alone or in combination with IBG. We used the modified Harris Hip Score (mHHS), University of California, Los Angeles (UCLA), and Short Form 36 (SF-36) to evaluate the clinical outcomes. Pelvis plain X-ray was used to assess hip center of rotation (COR), abduction angle and anteversion angle of acetabular cup, and incorporation of the bone graft to host bone.

Results

The median follow-up time was 61.0 (IQR 56.0 to 65.8) months. No patients underwent re-revision for loosening or any other reasons. Complications included 3 patients (16.7%) with early dislocation and 3 patients (16.7%) with delayed wound healing. The average mHHS and UCLA preoperatively were 44.1 ± 4.0 (range 35 to 50) and 2.6 ± 0.7 (range 2 to 4), respectively and at the last follow-up were 73.7 ± 4.2 (range 68 to 85) and 7.3 ± 0.5 (range 7 to 8), respectively. The mean SF-36 scores at the last follow-up were improved significantly than preoperative scores, especially in bodily pain category (P < 0.05). The average limb-length discrepancy (LLD) decreased significantly from 24.2 ± 2.6 (range 20 to 32) mm preoperatively to 5.8 ± 1.8 (range 3 to 9) mm at the last follow-up, respectively. However, there was no significant difference between two methods at the last follow-up in terms of mHHS, UCLA, SF-36, LLD, and hip COR (P > 0.05). Radiographic evaluation demonstrated bone graft incorporation in all hips in the follow-up.

Conclusions

Defect reconstruction using double-TM cups alone or combined with IBG are practical and reliable treatment options for Paprosky III acetabular defects without pelvic discontinuity. Nevertheless, high postoperative complication rate, especially in terms of dislocation, remains a challenge.
Literature
1.
go back to reference Zhen P, Liu J, Li X, Lu H, Zhou S. Primary total hip arthroplasty using an uncemented Wagner SL stem in elderly patients with Dorr type C femoral bone. J Orthop Surg Res. 2019;14(1):377.PubMedPubMedCentral Zhen P, Liu J, Li X, Lu H, Zhou S. Primary total hip arthroplasty using an uncemented Wagner SL stem in elderly patients with Dorr type C femoral bone. J Orthop Surg Res. 2019;14(1):377.PubMedPubMedCentral
2.
go back to reference Schmidt A, Batailler C, Fary C, Servien E, Lustig S. Dual mobility cups in revision total hip arthroplasty: efficient strategy to decrease dislocation risk. J Arthroplasty. 2020;35(2):500–7.PubMed Schmidt A, Batailler C, Fary C, Servien E, Lustig S. Dual mobility cups in revision total hip arthroplasty: efficient strategy to decrease dislocation risk. J Arthroplasty. 2020;35(2):500–7.PubMed
3.
go back to reference Froschen FS, Randau TM, Hischebeth GTR, Gravius N, Gravius S, Walter SG. Mid-term results after revision total hip arthroplasty with custom-made acetabular implants in patients with Paprosky III acetabular bone loss. Arch Orthop Trauma Surg. 2020;140(2):263–73.PubMed Froschen FS, Randau TM, Hischebeth GTR, Gravius N, Gravius S, Walter SG. Mid-term results after revision total hip arthroplasty with custom-made acetabular implants in patients with Paprosky III acetabular bone loss. Arch Orthop Trauma Surg. 2020;140(2):263–73.PubMed
4.
go back to reference Sayac G, Neri T, Schneider L, Philippot R, Farizon F, Boyer B. Low revision rates at more than 10 years for dual-mobility cups cemented into cages in complex revision total hip arthroplasty. J Arthroplasty. 2020;35(2):513–9.PubMed Sayac G, Neri T, Schneider L, Philippot R, Farizon F, Boyer B. Low revision rates at more than 10 years for dual-mobility cups cemented into cages in complex revision total hip arthroplasty. J Arthroplasty. 2020;35(2):513–9.PubMed
5.
go back to reference Watts CD, Abdel MP, Hanssen AD, Pagnano MW. Anatomic hip center decreases aseptic loosening rates after total hip arthroplasty with cement in patients with Crowe type-II dysplasia: a concise follow-up report at a mean of thirty-six years. J Bone Joint Surg Am. 2016;98(11):910–5.PubMed Watts CD, Abdel MP, Hanssen AD, Pagnano MW. Anatomic hip center decreases aseptic loosening rates after total hip arthroplasty with cement in patients with Crowe type-II dysplasia: a concise follow-up report at a mean of thirty-six years. J Bone Joint Surg Am. 2016;98(11):910–5.PubMed
6.
go back to reference Zhang H, Zhou J, Liu Y, Guan J, Ding H, Wang Z, Dong Q. Mid-term and long-term results of restoring rotation center in revision hip arthroplasty. J Orthop Surg Res. 2020;15(1):152.PubMedPubMedCentral Zhang H, Zhou J, Liu Y, Guan J, Ding H, Wang Z, Dong Q. Mid-term and long-term results of restoring rotation center in revision hip arthroplasty. J Orthop Surg Res. 2020;15(1):152.PubMedPubMedCentral
7.
go back to reference Webb JE, McGill RJ, Palumbo BT, Moschetti WE, Estok DM. The double-cup construct: a novel treatment strategy for the management of Paprosky IIIA and IIIB acetabular defects. J Arthroplasty. 2017;32(9S):S225–31.PubMed Webb JE, McGill RJ, Palumbo BT, Moschetti WE, Estok DM. The double-cup construct: a novel treatment strategy for the management of Paprosky IIIA and IIIB acetabular defects. J Arthroplasty. 2017;32(9S):S225–31.PubMed
8.
go back to reference Meneghini RM, Meyer C, Buckley CA, Hanssen AD, Lewallen DG. Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J Arthroplasty. 2010;25(3):337–41.PubMed Meneghini RM, Meyer C, Buckley CA, Hanssen AD, Lewallen DG. Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J Arthroplasty. 2010;25(3):337–41.PubMed
9.
go back to reference Yoshino K, Tsukeoka T, Tsuneizumi Y, Lee TH, Nakamura J, Suzuki M, Ohtori S. Revision total hip arthroplasty using a cementless cup supporter and iliac autograft: a minimum of 15-year follow-up. J Arthroplasty. 2017;32(11):3495–501.PubMed Yoshino K, Tsukeoka T, Tsuneizumi Y, Lee TH, Nakamura J, Suzuki M, Ohtori S. Revision total hip arthroplasty using a cementless cup supporter and iliac autograft: a minimum of 15-year follow-up. J Arthroplasty. 2017;32(11):3495–501.PubMed
10.
go back to reference Roessler PP, Jaenisch M, Kuhlmann M, Wacker M, Johannes Wagenhauser P, Gravius S, Wirtz DC. The augment-and-modular-cage revision system for reconstruction of severe acetabular defects-two-year clinical and radiographic results. Int Orthop. 2019;43(10):2269–78.PubMed Roessler PP, Jaenisch M, Kuhlmann M, Wacker M, Johannes Wagenhauser P, Gravius S, Wirtz DC. The augment-and-modular-cage revision system for reconstruction of severe acetabular defects-two-year clinical and radiographic results. Int Orthop. 2019;43(10):2269–78.PubMed
11.
go back to reference Masumoto Y, Fukunishi S, Fukui T, Takeda Y, Nishio S, Fujihara Y, Okahisa S, Okada T, Yoshiya S. Acetabular reconstruction for primary and revision total hip arthroplasty using Kerboull-type acetabular reinforcement devices-case-control study with factors related to poor outcomes of surgery. Medicine. 2019;98(27):e16090.PubMedPubMedCentral Masumoto Y, Fukunishi S, Fukui T, Takeda Y, Nishio S, Fujihara Y, Okahisa S, Okada T, Yoshiya S. Acetabular reconstruction for primary and revision total hip arthroplasty using Kerboull-type acetabular reinforcement devices-case-control study with factors related to poor outcomes of surgery. Medicine. 2019;98(27):e16090.PubMedPubMedCentral
12.
go back to reference Loppini M, Schiavi P, Rocca AD, Traverso F, Rocca FD, Mazziotta G, Astore F, Grappiolo G. Double-trabecular metal cup technique for the management of Paprosky type III defects without pelvic discontinuity. Hip Int. 2018;28(2_suppl):66–72.PubMed Loppini M, Schiavi P, Rocca AD, Traverso F, Rocca FD, Mazziotta G, Astore F, Grappiolo G. Double-trabecular metal cup technique for the management of Paprosky type III defects without pelvic discontinuity. Hip Int. 2018;28(2_suppl):66–72.PubMed
13.
go back to reference Lochel J, Janz V, Hipfl C, Perka C, Wassilew GI. Reconstruction of acetabular defects with porous tantalum shells and augments in revision total hip arthroplasty at ten-year follow-up. Bone Joint J. 2019;101-b(3):311–6.PubMed Lochel J, Janz V, Hipfl C, Perka C, Wassilew GI. Reconstruction of acetabular defects with porous tantalum shells and augments in revision total hip arthroplasty at ten-year follow-up. Bone Joint J. 2019;101-b(3):311–6.PubMed
14.
go back to reference Somers JF, Timperley AJ, Norton M, Taylor R, Gie GA. Block allografts in revision total hip arthroplasty. J Arthroplasty. 2002;17(5):562–8.PubMed Somers JF, Timperley AJ, Norton M, Taylor R, Gie GA. Block allografts in revision total hip arthroplasty. J Arthroplasty. 2002;17(5):562–8.PubMed
15.
go back to reference Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Zalavras CG. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 2011;469(11):2992–4.PubMedPubMedCentral Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Zalavras CG. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 2011;469(11):2992–4.PubMedPubMedCentral
16.
go back to reference Paprosky WG, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty. 1994;9(1):33–44.PubMed Paprosky WG, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty. 1994;9(1):33–44.PubMed
17.
go back to reference Schreurs BW, Keurentjes JC, Gardeniers JW, Verdonschot N, Slooff TJ, Veth RP. Acetabular revision with impacted morsellised cancellous bone grafting and a cemented acetabular component: a 20- to 25-year follow-up. J Bone Joint Surg Br. 2009;91(9):1148–53.PubMed Schreurs BW, Keurentjes JC, Gardeniers JW, Verdonschot N, Slooff TJ, Veth RP. Acetabular revision with impacted morsellised cancellous bone grafting and a cemented acetabular component: a 20- to 25-year follow-up. J Bone Joint Surg Br. 2009;91(9):1148–53.PubMed
18.
go back to reference Rigby M, Kenny PJ, Sharp R, Whitehouse SL, Gie GA, Timperley JA. Acetabular impaction grafting in total hip replacement. Hip Int. 2011;21(4):399–408.PubMed Rigby M, Kenny PJ, Sharp R, Whitehouse SL, Gie GA, Timperley JA. Acetabular impaction grafting in total hip replacement. Hip Int. 2011;21(4):399–408.PubMed
19.
go back to reference Gilbody J, Taylor C, Bartlett GE, Whitehouse SL, Hubble MJ, Timperley AJ, Howell JR, Wilson MJ. Clinical and radiographic outcomes of acetabular impaction grafting without cage reinforcement for revision hip replacement: a minimum ten-year follow-up study. Bone Joint J. 2014;96-b(2):188–94.PubMed Gilbody J, Taylor C, Bartlett GE, Whitehouse SL, Hubble MJ, Timperley AJ, Howell JR, Wilson MJ. Clinical and radiographic outcomes of acetabular impaction grafting without cage reinforcement for revision hip replacement: a minimum ten-year follow-up study. Bone Joint J. 2014;96-b(2):188–94.PubMed
20.
go back to reference Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60(2):217–20.PubMed Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60(2):217–20.PubMed
21.
go back to reference Corro S, Vicente M, Rodriguez-Pardo D, Pigrau C, Lung M, Corona PS. Vancomycin-gentamicin prefabricated spacers in 2-stage revision arthroplasty for chronic hip and knee periprosthetic joint infection: insights into reimplantation microbiology and outcomes. J Arthroplasty. 2020;35(1):247–54.PubMed Corro S, Vicente M, Rodriguez-Pardo D, Pigrau C, Lung M, Corona PS. Vancomycin-gentamicin prefabricated spacers in 2-stage revision arthroplasty for chronic hip and knee periprosthetic joint infection: insights into reimplantation microbiology and outcomes. J Arthroplasty. 2020;35(1):247–54.PubMed
22.
go back to reference Li X, Lu Y, Sun J, Lin X, Tang T. Treatment of crowe type-IV hip dysplasia using cementless total hip arthroplasty and double chevron subtrochanteric shortening osteotomy: a 5- to 10-year follow-up study. J Arthroplasty. 2017;32(2):475–9.PubMed Li X, Lu Y, Sun J, Lin X, Tang T. Treatment of crowe type-IV hip dysplasia using cementless total hip arthroplasty and double chevron subtrochanteric shortening osteotomy: a 5- to 10-year follow-up study. J Arthroplasty. 2017;32(2):475–9.PubMed
23.
go back to reference Liu T, Wang S, Huang G, Wang W. Treatment of Crowe IV developmental dysplasia of the hip with cementless total hip arthroplasty and shortening subtrochanteric osteotomy. J Int Med Res. 2019;47(7):3223–33.PubMedPubMedCentral Liu T, Wang S, Huang G, Wang W. Treatment of Crowe IV developmental dysplasia of the hip with cementless total hip arthroplasty and shortening subtrochanteric osteotomy. J Int Med Res. 2019;47(7):3223–33.PubMedPubMedCentral
24.
go back to reference Sporer SM, Paprosky WG. The use of a trabecular metal acetabular component and trabecular metal augment for severe acetabular defects. J Arthroplasty. 2006;21(6 Suppl 2):83–6.PubMed Sporer SM, Paprosky WG. The use of a trabecular metal acetabular component and trabecular metal augment for severe acetabular defects. J Arthroplasty. 2006;21(6 Suppl 2):83–6.PubMed
25.
go back to reference Brooker AF, Bowerman JW, Robinson RA, Riley LH Jr. Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am. 1973;55(8):1629–32.PubMed Brooker AF, Bowerman JW, Robinson RA, Riley LH Jr. Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am. 1973;55(8):1629–32.PubMed
26.
go back to reference Li Q, Chen X, Lin B, Ma Y, Liao JX, Zheng Q. Three-dimensional technology assisted trabecular metal cup and augments positioning in revision total hip arthroplasty with complex acetabular defects. J Orthop Surg Res. 2019;14(1):431.PubMedPubMedCentral Li Q, Chen X, Lin B, Ma Y, Liao JX, Zheng Q. Three-dimensional technology assisted trabecular metal cup and augments positioning in revision total hip arthroplasty with complex acetabular defects. J Orthop Surg Res. 2019;14(1):431.PubMedPubMedCentral
27.
go back to reference Weber M, Witzmann L, Wieding J, Grifka J, Renkawitz T, Craiovan B. Customized implants for acetabular Paprosky III defects may be positioned with high accuracy in revision hip arthroplasty. Int Orthop. 2019;43(10):2235–43.PubMed Weber M, Witzmann L, Wieding J, Grifka J, Renkawitz T, Craiovan B. Customized implants for acetabular Paprosky III defects may be positioned with high accuracy in revision hip arthroplasty. Int Orthop. 2019;43(10):2235–43.PubMed
28.
go back to reference De Martino I, Strigelli V, Cacciola G, Gu A, Bostrom MP, Sculco PK. Survivorship and clinical outcomes of custom triflange acetabular components in revision total hip arthroplasty: a systematic review. J Arthroplasty. 2019;34(10):2511–8.PubMed De Martino I, Strigelli V, Cacciola G, Gu A, Bostrom MP, Sculco PK. Survivorship and clinical outcomes of custom triflange acetabular components in revision total hip arthroplasty: a systematic review. J Arthroplasty. 2019;34(10):2511–8.PubMed
29.
go back to reference Phillips CB, Barrett JA, Losina E, Mahomed NN, Lingard EA, Guadagnoli E, Baron JA, Harris WH, Poss R, Katz JN. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am. 2003;85(1):20–6.PubMed Phillips CB, Barrett JA, Losina E, Mahomed NN, Lingard EA, Guadagnoli E, Baron JA, Harris WH, Poss R, Katz JN. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am. 2003;85(1):20–6.PubMed
30.
go back to reference Del Gaizo DJ, Kancherla V, Sporer SM, Paprosky WG. Tantalum augments for Paprosky IIIA defects remain stable at midterm followup. Clin Orthop Relat Res. 2012;470(2):395–401.PubMed Del Gaizo DJ, Kancherla V, Sporer SM, Paprosky WG. Tantalum augments for Paprosky IIIA defects remain stable at midterm followup. Clin Orthop Relat Res. 2012;470(2):395–401.PubMed
31.
go back to reference Volpin A, Konan S, Biz C, Tansey RJ, Haddad FS. Reconstruction of failed acetabular component in the presence of severe acetabular bone loss: a systematic review. Musculoskelet Surg. 2019;103(1):1–13.PubMed Volpin A, Konan S, Biz C, Tansey RJ, Haddad FS. Reconstruction of failed acetabular component in the presence of severe acetabular bone loss: a systematic review. Musculoskelet Surg. 2019;103(1):1–13.PubMed
32.
go back to reference Lu Y, Xiao H, Xue F. Causes of and treatment options for dislocation following total hip arthroplasty. Exp Ther Med. 2019;18(3):1715–22.PubMedPubMedCentral Lu Y, Xiao H, Xue F. Causes of and treatment options for dislocation following total hip arthroplasty. Exp Ther Med. 2019;18(3):1715–22.PubMedPubMedCentral
33.
go back to reference Li WT, Kozick Z, Sherman M, Restrepo C, Smith EB, Courtney PM. Dual mobility bearing articulations result in lower rates of dislocation after revision total hip arthroplasty. J Am Acad Orthop Surg. 2019. Li WT, Kozick Z, Sherman M, Restrepo C, Smith EB, Courtney PM. Dual mobility bearing articulations result in lower rates of dislocation after revision total hip arthroplasty. J Am Acad Orthop Surg. 2019.
34.
go back to reference Garcia-Cimbrelo E, Cruz-Pardos A, Garcia-Rey E, Ortega-Chamarro J. The survival and fate of acetabular reconstruction with impaction grafting for large defects. Clin Orthop Relat Res. 2010;468(12):3304–13.PubMedPubMedCentral Garcia-Cimbrelo E, Cruz-Pardos A, Garcia-Rey E, Ortega-Chamarro J. The survival and fate of acetabular reconstruction with impaction grafting for large defects. Clin Orthop Relat Res. 2010;468(12):3304–13.PubMedPubMedCentral
35.
go back to reference van der Donk S, Buma P, Slooff TJ, Gardeniers JW, Schreurs BW. Incorporation of morselized bone grafts: a study of 24 acetabular biopsy specimens. Clin Orthop Relat Res. 2002;396:131–41. van der Donk S, Buma P, Slooff TJ, Gardeniers JW, Schreurs BW. Incorporation of morselized bone grafts: a study of 24 acetabular biopsy specimens. Clin Orthop Relat Res. 2002;396:131–41.
Metadata
Title
Mid-term results of revision surgery using double-trabecular metal cups alone or combined with impaction bone grafting for complex acetabular defects
Authors
Xianghong Zhang
Zhihong Li
Wanchun Wang
Tang Liu
Weiqiu Peng
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2020
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-020-01828-x

Other articles of this Issue 1/2020

Journal of Orthopaedic Surgery and Research 1/2020 Go to the issue