Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

Open Access 01-12-2022 | Bone Defect | Research

Biomechanical effect of metal augment and bone graft on cup stability for acetabular reconstruction of total hip arthroplasty in hip dysplasia: a finite element analysis

Authors: Yuzhu Wang, Mincong Wang, Chengguo Li, Yoshihiro Nakamura, Liwei Deng, Go Yamako, Etsuo Chosa, Chenglong Pan

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

Different methods of acetabular reconstruction with total hip arthroplasty (THA) for Crowe II and III of adult developmental dysplasia of the hip (DDH) acetabular bone defect have been implemented clinically. However, the biomechanical effect of different augmented materials for acetabular reconstruction in THA on shell stability has never been discussed.

Methods

In the present study, autologous bone graft (BG)and metal (Ti6Al4V) augment (MA) were simulated with several acetabular bone defect models of DDH in THA. The contact pressure and micromotion between the shell and host bone were measured for evaluating the shell stability using a finite element method.

Results

The peak contact stress between shell and host bone was higher in the MA situation (12.45 vs 8.71 MPa). And the load transfer path was different, for BG models, the high local contact stresses were found at the junction of bone graft and host bone while for MA models the concentrated contact stresses were at the surface of MA. The peak relative micromotion between shell and host bone was higher in the MA situation (12.61 vs 11.13 µm). However, the peak micromotion decreased in the contact interface of MA and cup compared to the BG models.

Conclusions

The higher micromotion was found in MA models, however, enough for bone ingrowth, and direct stronger fixation was achieved in the MA-cup interface. Thus, we recommended the MA can be used as an option, even for Crowe III, however, the decision should be made from clinical follow-up results.
Literature
1.
go back to reference Greber EM, Pelt CE, Gililland JM, Anderson MB, Erickson JA, Peters CL. Challenges in Total Hip Arthroplasty in the Setting of Developmental Dysplasia of the Hip. J Arthroplasty. 2017;32(9S):S38–44.PubMedCrossRef Greber EM, Pelt CE, Gililland JM, Anderson MB, Erickson JA, Peters CL. Challenges in Total Hip Arthroplasty in the Setting of Developmental Dysplasia of the Hip. J Arthroplasty. 2017;32(9S):S38–44.PubMedCrossRef
2.
go back to reference Atilla B, Ali H, Aksoy MC, Caglar O, Tokgozoglu AM, Alpaslan M. Position of the acetabular component determines the fate of femoral head autografts in total hip replacement for acetabular dysplasia. J Bone Joint Surg Br. 2007;89(7):874–8.PubMedCrossRef Atilla B, Ali H, Aksoy MC, Caglar O, Tokgozoglu AM, Alpaslan M. Position of the acetabular component determines the fate of femoral head autografts in total hip replacement for acetabular dysplasia. J Bone Joint Surg Br. 2007;89(7):874–8.PubMedCrossRef
3.
go back to reference Sakellariou VI, Christodoulou M, Sasalos G, Babis GC. Reconstruction of the Acetabulum in Developmental Dysplasia of the Hip in total hip replacement. Arch Bone Jt Surg. 2014;2(3):130–6.PubMedPubMedCentral Sakellariou VI, Christodoulou M, Sasalos G, Babis GC. Reconstruction of the Acetabulum in Developmental Dysplasia of the Hip in total hip replacement. Arch Bone Jt Surg. 2014;2(3):130–6.PubMedPubMedCentral
4.
go back to reference Bicanic G, Barbaric K, Bohacek I, Aljinovic A, Delimar D. Current concept in dysplastic hip arthroplasty: Techniques for acetabular and femoral reconstruction. World J Orthop. 2014;5(4):412–24.PubMedPubMedCentralCrossRef Bicanic G, Barbaric K, Bohacek I, Aljinovic A, Delimar D. Current concept in dysplastic hip arthroplasty: Techniques for acetabular and femoral reconstruction. World J Orthop. 2014;5(4):412–24.PubMedPubMedCentralCrossRef
5.
go back to reference Wen X, Zuo J, Liu T, Gao Z, Xiao J. Bone defect map of the true acetabulum in hip dysplasia (Crowe type II and III) based on three-dimensional image reconstruction analysis. Sci Rep. 2021;11(1):22955.PubMedPubMedCentralCrossRef Wen X, Zuo J, Liu T, Gao Z, Xiao J. Bone defect map of the true acetabulum in hip dysplasia (Crowe type II and III) based on three-dimensional image reconstruction analysis. Sci Rep. 2021;11(1):22955.PubMedPubMedCentralCrossRef
6.
go back to reference Sanchez-Sotelo J, Berry DJ, Trousdale RT, Cabanela ME. Surgical treatment of developmental dysplasia of the hip in adults: II. Arthroplasty options. J Am Acad Orthop Surg. 2002;10(5):334–44.PubMedCrossRef Sanchez-Sotelo J, Berry DJ, Trousdale RT, Cabanela ME. Surgical treatment of developmental dysplasia of the hip in adults: II. Arthroplasty options. J Am Acad Orthop Surg. 2002;10(5):334–44.PubMedCrossRef
7.
go back to reference Dapuzzo MR, Sierra RJ. Acetabular considerations during total hip arthroplasty for hip dysplasia. Orthop Clin North Am. 2012;43(3):369–75.PubMedCrossRef Dapuzzo MR, Sierra RJ. Acetabular considerations during total hip arthroplasty for hip dysplasia. Orthop Clin North Am. 2012;43(3):369–75.PubMedCrossRef
8.
go back to reference Li H, Mao Y, Oni JK, Dai K, Zhu Z. Total hip replacement for developmental dysplasia of the hip with more than 30% lateral uncoverage of uncemented acetabular components. Bone Joint J. 2013;95-B(9):1178–83.PubMedCrossRef Li H, Mao Y, Oni JK, Dai K, Zhu Z. Total hip replacement for developmental dysplasia of the hip with more than 30% lateral uncoverage of uncemented acetabular components. Bone Joint J. 2013;95-B(9):1178–83.PubMedCrossRef
9.
go back to reference Zhang L, Lu X. Acetabular Cup Positioning during Total Hip Replacement in Osteoarthritis Secondary to Developmental Dysplasia of the Hip – a Review of the Literature. Acta Chir Orthop Traumatol Cech. 2019;86(2):93–100.PubMed Zhang L, Lu X. Acetabular Cup Positioning during Total Hip Replacement in Osteoarthritis Secondary to Developmental Dysplasia of the Hip – a Review of the Literature. Acta Chir Orthop Traumatol Cech. 2019;86(2):93–100.PubMed
10.
go back to reference Shen J, Sun J, Ma H, Du Y, Li T, Zhou Y. High Hip Center Technique in Total Hip Arthroplasty for Crowe Type II–III Developmental Dysplasia: Results of Midterm Follow-up. Orthop Surg. 2020;12:1245–52.PubMedPubMedCentralCrossRef Shen J, Sun J, Ma H, Du Y, Li T, Zhou Y. High Hip Center Technique in Total Hip Arthroplasty for Crowe Type II–III Developmental Dysplasia: Results of Midterm Follow-up. Orthop Surg. 2020;12:1245–52.PubMedPubMedCentralCrossRef
11.
go back to reference Kim M, Kadowaki T. High long-term survival of bulk femoral head autograft for acetabular reconstruction in cementless THA for developmental hip dysplasia. Clin Orthop Relat Res. 2010;468(6):1611–20.PubMedPubMedCentralCrossRef Kim M, Kadowaki T. High long-term survival of bulk femoral head autograft for acetabular reconstruction in cementless THA for developmental hip dysplasia. Clin Orthop Relat Res. 2010;468(6):1611–20.PubMedPubMedCentralCrossRef
12.
go back to reference Oommen AT, Krishnamoorthy VP, Poonnoose PM, Korula RJ. Fate of bone grafting for acetabular defects in total hip replacement. Indian J Orthop. 2015;49(2):181–6.PubMedPubMedCentralCrossRef Oommen AT, Krishnamoorthy VP, Poonnoose PM, Korula RJ. Fate of bone grafting for acetabular defects in total hip replacement. Indian J Orthop. 2015;49(2):181–6.PubMedPubMedCentralCrossRef
13.
go back to reference Abolghasemian M, Tangsataporn S, Sternheim A, Backstein DJ, Safir OA, Gross AE. Porous metal augments: big hopes for big holes. Bone Joint J. 2013;95-B(11 Suppl A):103–8.PubMedCrossRef Abolghasemian M, Tangsataporn S, Sternheim A, Backstein DJ, Safir OA, Gross AE. Porous metal augments: big hopes for big holes. Bone Joint J. 2013;95-B(11 Suppl A):103–8.PubMedCrossRef
15.
go back to reference Ohashi H, Yo H, Ikawa T, Minami Y, Teraoka T. Acetabular reconstruction with porous metal augments for primary and revision total hip arthroplasty. Ortho Pro. 2018;100-B:Suppl_11. Ohashi H, Yo H, Ikawa T, Minami Y, Teraoka T. Acetabular reconstruction with porous metal augments for primary and revision total hip arthroplasty. Ortho Pro. 2018;100-B:Suppl_11.
16.
go back to reference Fu J, Ni M, Chen J, Li X, Chai W, Hao L, Zhang G, Zhou Y. Reconstruction of Severe Acetabular Bone Defect with 3D Printed Ti6Al4V Augment: A Finite Element Study. Biomed Res Int. 2018;2018(14):6367203.PubMedPubMedCentral Fu J, Ni M, Chen J, Li X, Chai W, Hao L, Zhang G, Zhou Y. Reconstruction of Severe Acetabular Bone Defect with 3D Printed Ti6Al4V Augment: A Finite Element Study. Biomed Res Int. 2018;2018(14):6367203.PubMedPubMedCentral
17.
go back to reference Knowles NK, Reeves JM, Ferreira LM. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature. J Exp Orthop. 2016;3(1):36.PubMedPubMedCentralCrossRef Knowles NK, Reeves JM, Ferreira LM. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature. J Exp Orthop. 2016;3(1):36.PubMedPubMedCentralCrossRef
18.
go back to reference Wang Y, Yamako G, Okada T, Arakawa H, Nakamura Y, Chosa E. Biomechanical effect of intertrochanteric curved varus osteotomy on stress reduction in femoral head osteonecrosis: a finite element analysis. J Orthop Surg Res. 2021;16(1):465.PubMedPubMedCentralCrossRef Wang Y, Yamako G, Okada T, Arakawa H, Nakamura Y, Chosa E. Biomechanical effect of intertrochanteric curved varus osteotomy on stress reduction in femoral head osteonecrosis: a finite element analysis. J Orthop Surg Res. 2021;16(1):465.PubMedPubMedCentralCrossRef
19.
go back to reference Crowe JF, Mani VJ, Ranawat CS. Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am. 1979;61(1):15–23.PubMedCrossRef Crowe JF, Mani VJ, Ranawat CS. Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am. 1979;61(1):15–23.PubMedCrossRef
20.
go back to reference Jawad MU, Scully SP. In brief: Crowe’s classification: arthroplasty in developmental dysplasia of the hip. Clin Orthop Relat Res. 2011;469(1):306–8.PubMedCrossRef Jawad MU, Scully SP. In brief: Crowe’s classification: arthroplasty in developmental dysplasia of the hip. Clin Orthop Relat Res. 2011;469(1):306–8.PubMedCrossRef
21.
go back to reference Abolghasemian M, Samiezadeh S, Jafari D, Bougherara H, Gross AE, Ghazavi MT. Displacement of the hip center of rotation after arthroplasty of Crowe III and IV dysplasia: a radiological and biomechanical study. J Arthroplasty. 2013;28(6):1031–5.PubMedCrossRef Abolghasemian M, Samiezadeh S, Jafari D, Bougherara H, Gross AE, Ghazavi MT. Displacement of the hip center of rotation after arthroplasty of Crowe III and IV dysplasia: a radiological and biomechanical study. J Arthroplasty. 2013;28(6):1031–5.PubMedCrossRef
22.
go back to reference Wang C, Ouyang Y, Liu H, Xu C, Xiao H, Hu Y, Li Y, Zhong D. Surgery simulation teaching based on real reconstruction aid versus traditional surgical live teaching in the acquisition of an adult total hip arthroplasty surgical technique for developmental dysplasia of the hip: a randomized comparative study. BMC Med Educ. 2020;20(1):228.PubMedPubMedCentralCrossRef Wang C, Ouyang Y, Liu H, Xu C, Xiao H, Hu Y, Li Y, Zhong D. Surgery simulation teaching based on real reconstruction aid versus traditional surgical live teaching in the acquisition of an adult total hip arthroplasty surgical technique for developmental dysplasia of the hip: a randomized comparative study. BMC Med Educ. 2020;20(1):228.PubMedPubMedCentralCrossRef
23.
go back to reference Zhao X, Chosa E, Yamako G, Watanabe S, Deng G, Totoribe K. Effect of acetabular reinforcement ring with hook for acetabular dysplasia clarified by three-dimensional finite element analysis. J Arthroplasty. 2013;28(10):1765–9.PubMedCrossRef Zhao X, Chosa E, Yamako G, Watanabe S, Deng G, Totoribe K. Effect of acetabular reinforcement ring with hook for acetabular dysplasia clarified by three-dimensional finite element analysis. J Arthroplasty. 2013;28(10):1765–9.PubMedCrossRef
24.
go back to reference Du Y, Fu J, Sun J, Zhang G, Chen J, Ni M, Zhou Y. Acetabular Bone Defect in Total Hip Arthroplasty for Crowe II or III Developmental Dysplasia of the Hip: A Finite Element Study. Biomed Res Int. 2020;2020(25):4809013.PubMedPubMedCentral Du Y, Fu J, Sun J, Zhang G, Chen J, Ni M, Zhou Y. Acetabular Bone Defect in Total Hip Arthroplasty for Crowe II or III Developmental Dysplasia of the Hip: A Finite Element Study. Biomed Res Int. 2020;2020(25):4809013.PubMedPubMedCentral
26.
go back to reference Hsu JT, Tsai MT, Chang CH, Fuh LJ, Lai KA, Liu ZL, Tu MG, Huang HL. Finite Element Analysis of the Effects of Sizes of Acetabular Components on the Initial Stability of the Acetabular Cup. J Med Bio Eng. 2008;28(2):59–63. Hsu JT, Tsai MT, Chang CH, Fuh LJ, Lai KA, Liu ZL, Tu MG, Huang HL. Finite Element Analysis of the Effects of Sizes of Acetabular Components on the Initial Stability of the Acetabular Cup. J Med Bio Eng. 2008;28(2):59–63.
27.
go back to reference Dutt A. Effect of Mesh Size on Finite Element Analysis of Beam. Inter J Mech Eng. 2015;2(12):8–10.CrossRef Dutt A. Effect of Mesh Size on Finite Element Analysis of Beam. Inter J Mech Eng. 2015;2(12):8–10.CrossRef
28.
go back to reference Schileo E, Dall’ara E, Taddei F, Malandrino A, Schotkamp T, Baleani M, Viceconti M. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech. 2008;41(11):2483–91.PubMedCrossRef Schileo E, Dall’ara E, Taddei F, Malandrino A, Schotkamp T, Baleani M, Viceconti M. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech. 2008;41(11):2483–91.PubMedCrossRef
29.
go back to reference Ali AA, Cristofolini L, Schileo E, Hu H, Taddei F, Kim RH, Rullkoetter PJ, Laz PJ. Specimen-specific modeling of hip fracture pattern and repair. J Biomech. 2014;47(2):536–43.PubMedCrossRef Ali AA, Cristofolini L, Schileo E, Hu H, Taddei F, Kim RH, Rullkoetter PJ, Laz PJ. Specimen-specific modeling of hip fracture pattern and repair. J Biomech. 2014;47(2):536–43.PubMedCrossRef
30.
go back to reference Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.PubMedCrossRef Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.PubMedCrossRef
31.
go back to reference Takao M, Nakamura N, Ohzono K, Sakai T, Nishii T, Sugano N. The results of a press-fit-only technique for acetabular fixation in hip dysplasia. J Arthroplasty. 2011;26(4):562–8.PubMedCrossRef Takao M, Nakamura N, Ohzono K, Sakai T, Nishii T, Sugano N. The results of a press-fit-only technique for acetabular fixation in hip dysplasia. J Arthroplasty. 2011;26(4):562–8.PubMedCrossRef
32.
go back to reference Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. The effect of interfacial parameters on cup-bone relative micromotions. A finite element investigation J Biomech. 2001;34(1):113–20.PubMed Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. The effect of interfacial parameters on cup-bone relative micromotions. A finite element investigation J Biomech. 2001;34(1):113–20.PubMed
33.
go back to reference Ma L, Rainforth WM. The effect of lubrication on the friction and wear of Biolox®delta. Acta Biomater. 2012;8(6):2348–59.PubMedCrossRef Ma L, Rainforth WM. The effect of lubrication on the friction and wear of Biolox®delta. Acta Biomater. 2012;8(6):2348–59.PubMedCrossRef
34.
go back to reference Schüller HM, Dalstra M, Huiskes R, Marti RK. Total hip reconstruction in acetabular dysplasia. A finite element study. J Bone Joint Surg Br. 1993;75(3):468–74.PubMedCrossRef Schüller HM, Dalstra M, Huiskes R, Marti RK. Total hip reconstruction in acetabular dysplasia. A finite element study. J Bone Joint Surg Br. 1993;75(3):468–74.PubMedCrossRef
35.
go back to reference Rapperport DJ, Carter DR, Schurman DJ. Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening. J Orthop Res. 1987;5(4):548–61.PubMedCrossRef Rapperport DJ, Carter DR, Schurman DJ. Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening. J Orthop Res. 1987;5(4):548–61.PubMedCrossRef
36.
go back to reference Clarke SG, Phillips AT, Bull AM. Validation of FE micromotions and strains around a press-fit cup: introducing a new micromotion measuring technique. Ann Biomed Eng. 2012;40(7):1586–96.PubMedPubMedCentralCrossRef Clarke SG, Phillips AT, Bull AM. Validation of FE micromotions and strains around a press-fit cup: introducing a new micromotion measuring technique. Ann Biomed Eng. 2012;40(7):1586–96.PubMedPubMedCentralCrossRef
37.
go back to reference Miyagawa T, Matsumoto K, Komura S, Akiyama H. Total hip arthroplasty using a three-dimensional porous titanium acetabular cup: an examination of micromotion using subject-specific finite element analysis. BMC Musculoskelet Disord. 2021;22(1):308.PubMedPubMedCentralCrossRef Miyagawa T, Matsumoto K, Komura S, Akiyama H. Total hip arthroplasty using a three-dimensional porous titanium acetabular cup: an examination of micromotion using subject-specific finite element analysis. BMC Musculoskelet Disord. 2021;22(1):308.PubMedPubMedCentralCrossRef
38.
go back to reference DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;1:20–32. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;1:20–32.
39.
go back to reference Kluess D, Wieding J, Souffrant R, Mittelmeier W, Bader R. Finite Element Analysis in Orthopaedic Biomechanics. In: Moratal D, editor. Finite Element Analysis. London: IntechOpen; 2010. p. 151–70. Kluess D, Wieding J, Souffrant R, Mittelmeier W, Bader R. Finite Element Analysis in Orthopaedic Biomechanics. In: Moratal D, editor. Finite Element Analysis. London: IntechOpen; 2010. p. 151–70.
40.
go back to reference Genda E, Iwasaki N, Li G, MacWilliams BA, Barrance PJ, Chao EY. Normal hip joint contact pressure distribution in single-leg standing–effect of gender and anatomic parameters. J Biomech. 2001;34(7):895–905.PubMedCrossRef Genda E, Iwasaki N, Li G, MacWilliams BA, Barrance PJ, Chao EY. Normal hip joint contact pressure distribution in single-leg standing–effect of gender and anatomic parameters. J Biomech. 2001;34(7):895–905.PubMedCrossRef
41.
go back to reference Wang X, Peng J, Li D, Zhang L, Wang H, Jiang L, Chen X. Does the optimal position of the acetabular fragment should be within the radiological normal range for all developmental dysplasia of the hip? A patient-specific finite element analysis. J Orthop Surg Res. 2016;11(1):109.PubMedPubMedCentralCrossRef Wang X, Peng J, Li D, Zhang L, Wang H, Jiang L, Chen X. Does the optimal position of the acetabular fragment should be within the radiological normal range for all developmental dysplasia of the hip? A patient-specific finite element analysis. J Orthop Surg Res. 2016;11(1):109.PubMedPubMedCentralCrossRef
42.
go back to reference Zou Z, Chávez-Arreola A, Mandal P, Board TN, Alonso-Rasgado T. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis. J Orthop Res. 2013;31(3):472–9.PubMedCrossRef Zou Z, Chávez-Arreola A, Mandal P, Board TN, Alonso-Rasgado T. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis. J Orthop Res. 2013;31(3):472–9.PubMedCrossRef
43.
go back to reference Sorbie C, Zdero R, Bryant JT. Normal and Prosthesic Hip Biomechanics. In: Poitout DG, editor. Biomechanics and Biomaterials in Orthopedics. London: Springer; 2004. p. 528–49.CrossRef Sorbie C, Zdero R, Bryant JT. Normal and Prosthesic Hip Biomechanics. In: Poitout DG, editor. Biomechanics and Biomaterials in Orthopedics. London: Springer; 2004. p. 528–49.CrossRef
44.
go back to reference Lunn DE, Lampropoulos A, Stewart TD. Basic biomechanics of the hip. Orthopaedics and Trauma. 2016;30(2):239–46.CrossRef Lunn DE, Lampropoulos A, Stewart TD. Basic biomechanics of the hip. Orthopaedics and Trauma. 2016;30(2):239–46.CrossRef
46.
go back to reference Moussa A, Rahman S, Xu M, Tanzer M, Pasini D. Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. J Mech Behav Biomed Mater. 2020;105.PubMedCrossRef Moussa A, Rahman S, Xu M, Tanzer M, Pasini D. Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. J Mech Behav Biomed Mater. 2020;105.PubMedCrossRef
47.
go back to reference Xiao J, Zhao X, Wang Y, Yang Y, Zhao J, Gao Z, Zuo J. Application of Acetabular Reinforcement Ring with Hook for Correction of Segmental Acetabular Rim Defects during Total Hip Arthroplasty Revision. J Bionic Eng. 2018;15:154–9.CrossRef Xiao J, Zhao X, Wang Y, Yang Y, Zhao J, Gao Z, Zuo J. Application of Acetabular Reinforcement Ring with Hook for Correction of Segmental Acetabular Rim Defects during Total Hip Arthroplasty Revision. J Bionic Eng. 2018;15:154–9.CrossRef
48.
go back to reference Mukherjee K, Gupta S. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech Model Mechanobiol. 2016;15(2):389–403.PubMedCrossRef Mukherjee K, Gupta S. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech Model Mechanobiol. 2016;15(2):389–403.PubMedCrossRef
49.
go back to reference Liu X, Niebur GL. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol. 2008;7(4):335–44.PubMedCrossRef Liu X, Niebur GL. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol. 2008;7(4):335–44.PubMedCrossRef
50.
go back to reference Zuo J, Xu M, Zhao X, Shen X, Gao Z, Xiao J. Effects of the depth of the acetabular component during simulated acetabulum reaming in total hip arthroplasty. Sci Rep. 2021;11(1):9836.PubMedPubMedCentralCrossRef Zuo J, Xu M, Zhao X, Shen X, Gao Z, Xiao J. Effects of the depth of the acetabular component during simulated acetabulum reaming in total hip arthroplasty. Sci Rep. 2021;11(1):9836.PubMedPubMedCentralCrossRef
51.
go back to reference Gerber SD, Harris TW. Femoral head autografting to augment acetabular deficiency in patients requiring total hip replacement: a minimum five-year and an average seven-year follow-up study. J Bone Joint Surg Am. 1986;68:1241–8.PubMedCrossRef Gerber SD, Harris TW. Femoral head autografting to augment acetabular deficiency in patients requiring total hip replacement: a minimum five-year and an average seven-year follow-up study. J Bone Joint Surg Am. 1986;68:1241–8.PubMedCrossRef
52.
go back to reference Gross AE, Catre MG. The use of femoral head autograft shelf reconstruction and cemented acetabular components in the dysplastic hip. Clin Orthop Relat Res. 1994;298:60–6.CrossRef Gross AE, Catre MG. The use of femoral head autograft shelf reconstruction and cemented acetabular components in the dysplastic hip. Clin Orthop Relat Res. 1994;298:60–6.CrossRef
53.
go back to reference Hintermann B, Morscher EW. Total hip replacement with solid autologous femoral head graft for hip dysplasia. Arch Orthop Trauma Surg. 1995;114:137–44.PubMedCrossRef Hintermann B, Morscher EW. Total hip replacement with solid autologous femoral head graft for hip dysplasia. Arch Orthop Trauma Surg. 1995;114:137–44.PubMedCrossRef
54.
go back to reference Jeong M, Kim HJ, Lim SJ, Moon YW, Park YS. Revision Total Hip Arthroplasty Using Tantalum Augment in Patients with Paprosky III or IV Acetabular Bone Defects: A Minimum 2-year Follow Up Study. Hip Pelvis. 2016;28(2):98–103.PubMedPubMedCentralCrossRef Jeong M, Kim HJ, Lim SJ, Moon YW, Park YS. Revision Total Hip Arthroplasty Using Tantalum Augment in Patients with Paprosky III or IV Acetabular Bone Defects: A Minimum 2-year Follow Up Study. Hip Pelvis. 2016;28(2):98–103.PubMedPubMedCentralCrossRef
55.
go back to reference Löchel J, Janz V, Hipfl C, Perka C, Wassilew GI. Reconstruction of acetabular defects with porous tantalum shells and augments in revision total hip arthroplasty at ten-year follow-up. Bone Joint J. 2019;101-B(3):311–6.PubMedCrossRef Löchel J, Janz V, Hipfl C, Perka C, Wassilew GI. Reconstruction of acetabular defects with porous tantalum shells and augments in revision total hip arthroplasty at ten-year follow-up. Bone Joint J. 2019;101-B(3):311–6.PubMedCrossRef
56.
go back to reference Ghanem M, Zajonz D, Heyde CE, Roth A. Acetabular defect classification and management: Revision arthroplasty of the acetabular cup based on 3-point fixation. Orthopade. 2020;49(5):432–42.PubMedPubMedCentralCrossRef Ghanem M, Zajonz D, Heyde CE, Roth A. Acetabular defect classification and management: Revision arthroplasty of the acetabular cup based on 3-point fixation. Orthopade. 2020;49(5):432–42.PubMedPubMedCentralCrossRef
57.
go back to reference Von Hertzberg-Boelch SP, Wagenbrenner M, Arnholdt J, Frenzel S, Holzapfel BM, Rudert M. Custom Made Monoflange Acetabular Components for the Treatment of Paprosky Type III Defects. J Pers Med. 2021;11(4):283.CrossRef Von Hertzberg-Boelch SP, Wagenbrenner M, Arnholdt J, Frenzel S, Holzapfel BM, Rudert M. Custom Made Monoflange Acetabular Components for the Treatment of Paprosky Type III Defects. J Pers Med. 2021;11(4):283.CrossRef
58.
go back to reference Anderson AE, Peters CL, Tuttle BD, Weiss JA. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng. 2005;127(3):364–73.PubMedCrossRef Anderson AE, Peters CL, Tuttle BD, Weiss JA. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng. 2005;127(3):364–73.PubMedCrossRef
59.
go back to reference Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng. 2015;137(2).PubMedCrossRef Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng. 2015;137(2).PubMedCrossRef
60.
go back to reference Beckmann NA, Bitsch RG, Gondan M, Schonhoff M, Jaeger S. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res. 2018;7(4):282–8.PubMedPubMedCentralCrossRef Beckmann NA, Bitsch RG, Gondan M, Schonhoff M, Jaeger S. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res. 2018;7(4):282–8.PubMedPubMedCentralCrossRef
61.
go back to reference Morosato F, Traina F, Schierjott RA, Hettich G, Grupp TM, Cristofolini L. Primary Stability of Revision Acetabular Reconstructions Using an Innovative Bone Graft Substitute: A Comparative Biomechanical Study on Cadaveric Pelvises. Materials (Basel). 2020;13(19):4312.CrossRef Morosato F, Traina F, Schierjott RA, Hettich G, Grupp TM, Cristofolini L. Primary Stability of Revision Acetabular Reconstructions Using an Innovative Bone Graft Substitute: A Comparative Biomechanical Study on Cadaveric Pelvises. Materials (Basel). 2020;13(19):4312.CrossRef
62.
go back to reference Amirouche F, Solitro G, Broviak S, Gonzalez M, Goldstein W, Barmada R. Factors influencing initial cup stability in total hip arthroplasty. Clin Biomech (Bristol, Avon). 2014;29(10):1177–85.CrossRef Amirouche F, Solitro G, Broviak S, Gonzalez M, Goldstein W, Barmada R. Factors influencing initial cup stability in total hip arthroplasty. Clin Biomech (Bristol, Avon). 2014;29(10):1177–85.CrossRef
63.
go back to reference Liu S, Tao S, Tan J, Hu X, Liu H, Li Z. Long-term follow-up of fibular graft for the reconstruction of bone defects. Medicine (Baltimore). 2018;97(40).PubMedPubMedCentralCrossRef Liu S, Tao S, Tan J, Hu X, Liu H, Li Z. Long-term follow-up of fibular graft for the reconstruction of bone defects. Medicine (Baltimore). 2018;97(40).PubMedPubMedCentralCrossRef
64.
go back to reference Macák D, Džupa V, Krbec M. Individuální titanová acetabulární komponenta vyrobená 3D tiskem: výhody a limity použití [Custom-Made 3D Printed Titanium Acetabular Component: Advantages and Limits of Use]. Acta Chir Orthop Traumatol Cech. 2021;88(1):69–74.PubMed Macák D, Džupa V, Krbec M. Individuální titanová acetabulární komponenta vyrobená 3D tiskem: výhody a limity použití [Custom-Made 3D Printed Titanium Acetabular Component: Advantages and Limits of Use]. Acta Chir Orthop Traumatol Cech. 2021;88(1):69–74.PubMed
Metadata
Title
Biomechanical effect of metal augment and bone graft on cup stability for acetabular reconstruction of total hip arthroplasty in hip dysplasia: a finite element analysis
Authors
Yuzhu Wang
Mincong Wang
Chengguo Li
Yoshihiro Nakamura
Liwei Deng
Go Yamako
Etsuo Chosa
Chenglong Pan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05168-1

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue