Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

Open Access 01-12-2022 | Bone Defect | Research

Risk factors of transport gap bending deformity in the treatment of critical-size bone defect after bone transport

Authors: Abulaiti Abula, Erlin Cheng, Alimujiang Abulaiti, Kai Liu, Yanshi Liu, Peng Ren

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

The purpose of this study was to investigate the risk factors of transport gap bending deformity (TGBD) in the treatment of critical-size bone defect (CSBD) after the removal of the external fixator.

Methods

From January 2008 to December 2019, 178 patients with bone defects of the lower extremity caused by infection were treated by bone transport using a unilateral external fixator in our medical institution. TGBD was defined as the bone callus in the distraction area with a deviation to the force line of the femur (> 10°) or tibia (> 12°) after removal of the external fixator. The Association for the Study and Application of the Method of Ilizarov (ASAMI) standard was applied to assess the bone and functional outcomes. After the data were significant by the T-test or Pearson’s Chi-square test was analyzed, odds ratios were calculated using logistic regression tests to describe factors associated with the diagnosis of TGBD.

Results

A total of 178 patients were enrolled in the study, with a mean follow-up time of 28.6 ± 3.82 months. The positive result of the bacteria isolated test was observed in 144 cases (80.9%). The rate of excellent and good in the bone outcomes (excellent/good/fair/poor/failure, 41/108/15/14/0) was 83.7%, and 92.3% in the functional results (excellent/good/fair/poor/failure, 50/98/16/14/0) according to the ASAMI criteria. TGBD after removal of external fixator occurred in twenty-two patients (12.3%), including 6 tibias, and 16 femurs. Age > 45 years, BMI > 25 kg/m2, femoral defect, diabetes, osteoporosis, glucocorticoid intake, duration of infection > 24 months, EFT > 9 months, EFI > 1.8 month/cm were associated significantly with a higher incidence of TGBD in the binary logistic regression analysis (P < 0.05). The incidence more than 50% was found in patients with femoral defect (76.1%), osteoporosis (72.7%), BMI > 25 kg/m2 (69.0%), diabetes (59.5%), glucocorticoid intake (54.7%). In the multivariate logistic regression analyses, the following factors were associated independently with TGBD, including age > 45 years, BMI > 25 kg/m2, femoral defect, diabetes, and osteoporosis.

Conclusions

Bone transport using a unilateral external fixator was a safe and practical method in the treatment of CSBD caused by infection. The top five risk factors of TGBD included femoral defect, BMI > 25 kg/m2, duration of bone infection > 24 months, age > 45 years, and diabetes. Age > 45 years, BMI > 25 kg/m2, femoral defect, osteoporosis, and diabetes were the independent risk factors. The higher incidence of TGBD may be associated with more risk factors.
Literature
1.
go back to reference Borzunov DY, Chevardin AV. Ilizarov non-free bone plasty for extensive tibial defects. Int Orthop. 2013;37(4):709–14.CrossRef Borzunov DY, Chevardin AV. Ilizarov non-free bone plasty for extensive tibial defects. Int Orthop. 2013;37(4):709–14.CrossRef
2.
go back to reference Papakostidis C, Bhandari M, Giannoudis PV. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J. 2013;95-B(12):1673–80.CrossRef Papakostidis C, Bhandari M, Giannoudis PV. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J. 2013;95-B(12):1673–80.CrossRef
3.
go back to reference Yin P, Ji Q, Li T, Li J, Li Z, Liu J, Wang G, Wang S, Zhang L, Mao Z, et al. A Systematic Review and Meta-Analysis of Ilizarov Methods in the Treatment of Infected Nonunion of Tibia and Femur. PLoS One. 2015;10(11):e141973.CrossRef Yin P, Ji Q, Li T, Li J, Li Z, Liu J, Wang G, Wang S, Zhang L, Mao Z, et al. A Systematic Review and Meta-Analysis of Ilizarov Methods in the Treatment of Infected Nonunion of Tibia and Femur. PLoS One. 2015;10(11):e141973.CrossRef
4.
go back to reference Bezstarosti H, Metsemakers WJ, van Lieshout EMM, Voskamp LW, Kortram K, McNally MA, et al. Management of critical-sized bone defects in the treatment of fracture-related infection: a systematic review and pooled analysis. Arch Orthop Trauma Surg. 2021;141(7):1215–30. Bezstarosti H, Metsemakers WJ, van Lieshout EMM, Voskamp LW, Kortram K, McNally MA, et al. Management of critical-sized bone defects in the treatment of fracture-related infection: a systematic review and pooled analysis. Arch Orthop Trauma Surg. 2021;141(7):1215–30.
5.
go back to reference El-Rosasy MA, Ayoub MA. Traumatic Composite Bone and Soft Tissue Loss of the Leg: Region-Specific Classification and Treatment Algorithm. Injury. 2020;51(6):1352–61. El-Rosasy MA, Ayoub MA. Traumatic Composite Bone and Soft Tissue Loss of the Leg: Region-Specific Classification and Treatment Algorithm. Injury. 2020;51(6):1352–61.
6.
go back to reference Testa G, Vescio A, Aloj DC, Costa D, Papotto G, Gurrieri L, Sessa G, Pavone V. Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series. J Clin Med. 2020;9(5):1352.CrossRef Testa G, Vescio A, Aloj DC, Costa D, Papotto G, Gurrieri L, Sessa G, Pavone V. Treatment of Infected Tibial Non-Unions with Ilizarov Technique: A Case Series. J Clin Med. 2020;9(5):1352.CrossRef
7.
go back to reference Li Y, Shen S, Xiao Q, Wang G, Yang H, Zhao H, Shu B, Zhuo N. Efficacy comparison of double-level and single-level bone transport with Orthofix fixator for treatment of tibia fracture with massive bone defects. Int Orthop. 2020;44(5):957–63.CrossRef Li Y, Shen S, Xiao Q, Wang G, Yang H, Zhao H, Shu B, Zhuo N. Efficacy comparison of double-level and single-level bone transport with Orthofix fixator for treatment of tibia fracture with massive bone defects. Int Orthop. 2020;44(5):957–63.CrossRef
8.
go back to reference Wen H, Zhu S, Li C, Xu Y. Bone transport versus acute shortening for the management of infected tibial bone defects: a meta-analysis. BMC Musculoskel Dis. 2020;21(1):80.CrossRef Wen H, Zhu S, Li C, Xu Y. Bone transport versus acute shortening for the management of infected tibial bone defects: a meta-analysis. BMC Musculoskel Dis. 2020;21(1):80.CrossRef
9.
go back to reference Abulaiti A, Yilihamu Y, Yasheng T, Alike Y, Yusufu A. The psychological impact of external fixation using the Ilizarov or Orthofix LRS method to treat tibial osteomyelitis with a bone defect. Injury. 2017;48(12):2842–6.CrossRef Abulaiti A, Yilihamu Y, Yasheng T, Alike Y, Yusufu A. The psychological impact of external fixation using the Ilizarov or Orthofix LRS method to treat tibial osteomyelitis with a bone defect. Injury. 2017;48(12):2842–6.CrossRef
10.
go back to reference Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A. Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskel Dis. 2020;21(1):354.CrossRef Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A. Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskel Dis. 2020;21(1):354.CrossRef
11.
go back to reference Liu K, Abulaiti A, Liu Y, Cai F, Ren P, Yusufu A. Risk factors of pin tract infection during bone transport using unilateral external fixator in the treatment of bone defects. BMC Surg. 2021;21(1):377.CrossRef Liu K, Abulaiti A, Liu Y, Cai F, Ren P, Yusufu A. Risk factors of pin tract infection during bone transport using unilateral external fixator in the treatment of bone defects. BMC Surg. 2021;21(1):377.CrossRef
12.
go back to reference Aktuglu K, Erol K, Vahabi A. Ilizarov bone transport and treatment of critical-sized tibial bone defects: a narrative review. J Orthop Trauma. 2019;20(1):22.CrossRef Aktuglu K, Erol K, Vahabi A. Ilizarov bone transport and treatment of critical-sized tibial bone defects: a narrative review. J Orthop Trauma. 2019;20(1):22.CrossRef
13.
go back to reference Haines NM, Lack WD, Seymour RB, Bosse MJ. Defining the Lower Limit of a “Critical Bone Defect” in Open Diaphyseal Tibial Fractures. J Orthop Trauma. 2016;30(5):e158–63.CrossRef Haines NM, Lack WD, Seymour RB, Bosse MJ. Defining the Lower Limit of a “Critical Bone Defect” in Open Diaphyseal Tibial Fractures. J Orthop Trauma. 2016;30(5):e158–63.CrossRef
14.
go back to reference Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? J Orthop Trauma. 2018;32(3):S7–11.CrossRef Nauth A, Schemitsch E, Norris B, Nollin Z, Watson JT. Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? J Orthop Trauma. 2018;32(3):S7–11.CrossRef
15.
go back to reference Liu K, Liu Y, Cai F, Fan C, Ren P, Yusufu A. Efficacy comparison of trifocal bone transport using unilateral external fixator for femoral and tibial bone defects caused by infection. BMC Surg. 2022;22(1):141.CrossRef Liu K, Liu Y, Cai F, Fan C, Ren P, Yusufu A. Efficacy comparison of trifocal bone transport using unilateral external fixator for femoral and tibial bone defects caused by infection. BMC Surg. 2022;22(1):141.CrossRef
16.
go back to reference Matsuhashi M, Saito T, Noda T, Uehara T, Shimamura Y, Ozaki T: Treatment for postoperative infection of pathological femoral fracture after radiotherapy: two case reports and review of the literature. Arch Orthop Traum Su 2020. Matsuhashi M, Saito T, Noda T, Uehara T, Shimamura Y, Ozaki T: Treatment for postoperative infection of pathological femoral fracture after radiotherapy: two case reports and review of the literature. Arch Orthop Traum Su 2020.
17.
go back to reference Biz C, Crimì A, Fantoni I, Vigo M, Iacobellis C, Ruggieri P: Functional outcome and complications after treatment of comminuted tibial fractures or deformities using Ilizarov bone transport: a single-center study at 15- to 30-year follow-up. Arch Orthop Traum Su 2020. Biz C, Crimì A, Fantoni I, Vigo M, Iacobellis C, Ruggieri P: Functional outcome and complications after treatment of comminuted tibial fractures or deformities using Ilizarov bone transport: a single-center study at 15- to 30-year follow-up. Arch Orthop Traum Su 2020.
18.
go back to reference Ilizarov GA. The principles of the Ilizarov method. 1988. Bull Hosp Jt Dis. 1997;56(1):49–53.PubMed Ilizarov GA. The principles of the Ilizarov method. 1988. Bull Hosp Jt Dis. 1997;56(1):49–53.PubMed
19.
go back to reference Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81–104.CrossRef Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81–104.CrossRef
20.
go back to reference Kalvesten J, Lui LY, Brismar T, Cummings S. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX. Bone. 2016;86:30–5.CrossRef Kalvesten J, Lui LY, Brismar T, Cummings S. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX. Bone. 2016;86:30–5.CrossRef
21.
go back to reference Buenzli PR, Lerebours C, Roschger A, Roschger P, Weinkamer R. Late stages of mineralization and their signature on the bone mineral density distribution. Connect Tissue Res. 2018;59(sup1):74–80.CrossRef Buenzli PR, Lerebours C, Roschger A, Roschger P, Weinkamer R. Late stages of mineralization and their signature on the bone mineral density distribution. Connect Tissue Res. 2018;59(sup1):74–80.CrossRef
22.
go back to reference Sun XT, Easwar TR, Manesh S, Ryu JH, Song SH, Kim SJ, Song HR. Complications and outcome of tibial lengthening using the Ilizarov method with or without a supplementary intramedullary nail: a case-matched comparative study. J Bone Joint Surg Br. 2011;93(6):782–7.CrossRef Sun XT, Easwar TR, Manesh S, Ryu JH, Song SH, Kim SJ, Song HR. Complications and outcome of tibial lengthening using the Ilizarov method with or without a supplementary intramedullary nail: a case-matched comparative study. J Bone Joint Surg Br. 2011;93(6):782–7.CrossRef
23.
go back to reference Ocksrider J, Boden AL, Greif DN, Hernandez R, Jose J, Pretell-Mazzini J, Subhawong T, Foremny GB, Singer A, Quinnan SM. Radiographic evaluation of reconstructive surgery for segmental bone defects: What the radiologist should know about distraction osteogenesis and bone grafting. Clin Imaging. 2020;67:15–29.CrossRef Ocksrider J, Boden AL, Greif DN, Hernandez R, Jose J, Pretell-Mazzini J, Subhawong T, Foremny GB, Singer A, Quinnan SM. Radiographic evaluation of reconstructive surgery for segmental bone defects: What the radiologist should know about distraction osteogenesis and bone grafting. Clin Imaging. 2020;67:15–29.CrossRef
24.
go back to reference Chimutengwende-Gordon M, Mbogo A, Khan W, Wilkes R. Limb reconstruction after traumatic bone loss. Injury. 2017;48(2):206–13.CrossRef Chimutengwende-Gordon M, Mbogo A, Khan W, Wilkes R. Limb reconstruction after traumatic bone loss. Injury. 2017;48(2):206–13.CrossRef
25.
go back to reference Schwartz AM, Schenker ML, Ahn J, Willett NJ. Building better bone: The weaving of biologic and engineering strategies for managing bone loss. J Orthop Res. 2017;35(9):1855–64.CrossRef Schwartz AM, Schenker ML, Ahn J, Willett NJ. Building better bone: The weaving of biologic and engineering strategies for managing bone loss. J Orthop Res. 2017;35(9):1855–64.CrossRef
26.
go back to reference Mattei L, Di Puccio F, Marchetti S. Fracture Healing Monitoring by Impact Tests: Single Case Study of a Fractured Tibia With External Fixator. IEEE J Trans Eng Health Med. 2019;7:1–6.CrossRef Mattei L, Di Puccio F, Marchetti S. Fracture Healing Monitoring by Impact Tests: Single Case Study of a Fractured Tibia With External Fixator. IEEE J Trans Eng Health Med. 2019;7:1–6.CrossRef
27.
go back to reference Banefelt J, Akesson KE, Spangeus A, Ljunggren O, Karlsson L, Strom O, Ortsater G, Libanati C, Toth E. Risk of imminent fracture following a previous fracture in a Swedish database study. Osteoporos Int. 2019;30(3):601–9.CrossRef Banefelt J, Akesson KE, Spangeus A, Ljunggren O, Karlsson L, Strom O, Ortsater G, Libanati C, Toth E. Risk of imminent fracture following a previous fracture in a Swedish database study. Osteoporos Int. 2019;30(3):601–9.CrossRef
28.
go back to reference Szelerski A, Pajchert Kozłowska A, Żarek S, Górski R, Mochocki K, Dejnek M, Urbański W, Reichert P, Morasiewicz P: A new criterion for assessing Ilizarov treatment outcomes in nonunion of the tibia. Arch Orthop Traum Su 2020. Szelerski A, Pajchert Kozłowska A, Żarek S, Górski R, Mochocki K, Dejnek M, Urbański W, Reichert P, Morasiewicz P: A new criterion for assessing Ilizarov treatment outcomes in nonunion of the tibia. Arch Orthop Traum Su 2020.
29.
go back to reference Yu F, Xia W. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos. 2019;14(1):1–20.CrossRef Yu F, Xia W. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos. 2019;14(1):1–20.CrossRef
30.
go back to reference Sabharwal S, Green S, McCarthy J, Hamdy RC. What’s New in Limb Lengthening and Deformity Correction. J Bone Joint Surg Am. 2011;93(2):213–21.CrossRef Sabharwal S, Green S, McCarthy J, Hamdy RC. What’s New in Limb Lengthening and Deformity Correction. J Bone Joint Surg Am. 2011;93(2):213–21.CrossRef
31.
go back to reference Augat P, Faschingbauer M, Seide K, Tobita K, Callary SA, Solomon LB, Holstein JH. Biomechanical methods for the assessment of fracture repair. Injury. 2014;45(Suppl 2):S32–8.CrossRef Augat P, Faschingbauer M, Seide K, Tobita K, Callary SA, Solomon LB, Holstein JH. Biomechanical methods for the assessment of fracture repair. Injury. 2014;45(Suppl 2):S32–8.CrossRef
32.
go back to reference Fountain S, Windolf M, Henkel J, Tavakoli A, Schuetz MA, Hutmacher DW, Epari DR. Monitoring Healing Progression and Characterizing the Mechanical Environment in Preclinical Models for Bone Tissue Engineering. Tissue Eng Part B Rev. 2016;22(1):47–57.CrossRef Fountain S, Windolf M, Henkel J, Tavakoli A, Schuetz MA, Hutmacher DW, Epari DR. Monitoring Healing Progression and Characterizing the Mechanical Environment in Preclinical Models for Bone Tissue Engineering. Tissue Eng Part B Rev. 2016;22(1):47–57.CrossRef
33.
go back to reference Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.CrossRef Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.CrossRef
34.
go back to reference Geusens PP, van den Bergh JP. Osteoporosis and osteoarthritis. Curr Opin Rheumatol. 2016;28(2):97–103.CrossRef Geusens PP, van den Bergh JP. Osteoporosis and osteoarthritis. Curr Opin Rheumatol. 2016;28(2):97–103.CrossRef
35.
go back to reference Kurra S, Fink DA, Siris ES. Osteoporosis-associated Fracture and Diabetes. Endocrin Metab Clin. 2014;43(1):233–43.CrossRef Kurra S, Fink DA, Siris ES. Osteoporosis-associated Fracture and Diabetes. Endocrin Metab Clin. 2014;43(1):233–43.CrossRef
36.
go back to reference Hollensteiner M, Sandriesser S, Bliven E, von Rüden C, Augat P. Biomechanics of Osteoporotic Fracture Fixation. Curr Osteoporos Rep. 2019;17(6):363–74.CrossRef Hollensteiner M, Sandriesser S, Bliven E, von Rüden C, Augat P. Biomechanics of Osteoporotic Fracture Fixation. Curr Osteoporos Rep. 2019;17(6):363–74.CrossRef
37.
go back to reference Gulabi D, Erdem M, Cecen GS, Avci CC, Saglam N, Saglam F. Ilizarov fixator combined with an intramedullary nail for tibial nonunions with bone loss: is it effective? Clin Orthop Relat Res. 2014;472(12):3892–901.CrossRef Gulabi D, Erdem M, Cecen GS, Avci CC, Saglam N, Saglam F. Ilizarov fixator combined with an intramedullary nail for tibial nonunions with bone loss: is it effective? Clin Orthop Relat Res. 2014;472(12):3892–901.CrossRef
38.
go back to reference Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A. Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskelet Disord. 2020;21(1):354.CrossRef Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A. Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskelet Disord. 2020;21(1):354.CrossRef
39.
go back to reference Bell A, Templeman D, Weinlein JC. Nonunion of the Femur and Tibia: An Update. Orthop Clin North Am. 2016;47(2):365–75.CrossRef Bell A, Templeman D, Weinlein JC. Nonunion of the Femur and Tibia: An Update. Orthop Clin North Am. 2016;47(2):365–75.CrossRef
40.
go back to reference Poiana C, Capatina C. Fracture Risk Assessment in Patients With Diabetes Mellitus. J Clin Densitom. 2017;20(3):432–43.CrossRef Poiana C, Capatina C. Fracture Risk Assessment in Patients With Diabetes Mellitus. J Clin Densitom. 2017;20(3):432–43.CrossRef
41.
go back to reference Jiao H, Xiao E, Graves DT. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep. 2015;13(5):327–35.CrossRef Jiao H, Xiao E, Graves DT. Diabetes and Its Effect on Bone and Fracture Healing. Curr Osteoporos Rep. 2015;13(5):327–35.CrossRef
42.
go back to reference Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinal. 2017;13(4):208–19.CrossRef Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinal. 2017;13(4):208–19.CrossRef
43.
go back to reference Jia P, Bao L, Chen H, Yuan J, Liu W, Feng F, Li J, Tang H. Risk of low-energy fracture in type 2 diabetes patients: a meta-analysis of observational studies. Osteoporos Int. 2017;28(11):3113–21.CrossRef Jia P, Bao L, Chen H, Yuan J, Liu W, Feng F, Li J, Tang H. Risk of low-energy fracture in type 2 diabetes patients: a meta-analysis of observational studies. Osteoporos Int. 2017;28(11):3113–21.CrossRef
44.
go back to reference Smith IM, Austin OMB, Batchelor AG. The treatment of chronic osteomyelitis: A 10 year audit. J Plast Reconstr Aesthet Surg. 2006;59(1):11–5.CrossRef Smith IM, Austin OMB, Batchelor AG. The treatment of chronic osteomyelitis: A 10 year audit. J Plast Reconstr Aesthet Surg. 2006;59(1):11–5.CrossRef
45.
go back to reference Maffulli N, Papalia R, Zampogna B, Torre G, Albo E, Denaro V. The management of osteomyelitis in the adult. Surgeon. 2016;14(6):345–60.CrossRef Maffulli N, Papalia R, Zampogna B, Torre G, Albo E, Denaro V. The management of osteomyelitis in the adult. Surgeon. 2016;14(6):345–60.CrossRef
Metadata
Title
Risk factors of transport gap bending deformity in the treatment of critical-size bone defect after bone transport
Authors
Abulaiti Abula
Erlin Cheng
Alimujiang Abulaiti
Kai Liu
Yanshi Liu
Peng Ren
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05852-2

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue