Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2021

01-12-2021 | Bone Defect | Research

3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis

Authors: Heng Zhao, Shi Shen, Lu Zhao, Yulin Xu, Yang Li, Naiqiang Zhuo

Published in: BMC Musculoskeletal Disorders | Issue 1/2021

Login to get access

Abstract

Background

The repair of large bone defects is a great challenge for orthopedics. Although the development of three-dimensional (3D) printed titanium alloy (Ti6Al4V) implants with optimized the pore structure have effectively promoted the osseointegration. However, due to the biological inertia of Ti6Al4Vsurface and the neglect of angiogenesis, some patients still suffer from postoperative complications such as dislocation or loosening of the prosthesis.

Methods

The purpose of this study was to construct 3D printed porous Ti6Al4V scaffolds filled with bone marrow mesenchymal stem cells (BMSC) and endothelial progenitor cells (EPC) loaded hydrogel and evaluate the efficacy of this composite implants on osteogenesis and angiogenesis, thus promoting osseointegration.

Results

The porosity and pore size of prepared 3D printed porous Ti6Al4V scaffolds were 69.2 ± 0.9 % and 593.4 ± 16.9 μm, respectively, which parameters were beneficial to bone ingrowth and blood vessel formation. The BMSC and EPC filled into the pores of the scaffolds after being encapsulated by hydrogels can maintain high viability. As a cell containing composite implant, BMSC and EPC loaded hydrogel incorporated into 3D printed porous Ti6Al4V scaffolds enhancing osteogenesis and angiogenesis to repair bone defects efficiently. At the transcriptional level, the composite implant up-regulated the expression levels of the osteogenesis-related genes alkaline phosphatase (ALP) and osteocalcin (OCN), and angiogenesis-related genes hypoxia-inducible factor 1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF).

Conclusions

Overall, the strategy of loading porous Ti6Al4V scaffolds to incorporate cells is a promising treatment for improving osseointegration.
Literature
1.
go back to reference Guo Y, Ren L, Xie K, Wang L, Yu BH, Jiang WB, Zhao YH, Hao YQ. Functionalized TiCu/Ti-Cu-N-Coated 3D-Printed Porous Ti6Al4V Scaffold Promotes Bone Regeneration through BMSC Recruitment. Adv Mater Interfaces. 2020;7(6):13.CrossRef Guo Y, Ren L, Xie K, Wang L, Yu BH, Jiang WB, Zhao YH, Hao YQ. Functionalized TiCu/Ti-Cu-N-Coated 3D-Printed Porous Ti6Al4V Scaffold Promotes Bone Regeneration through BMSC Recruitment. Adv Mater Interfaces. 2020;7(6):13.CrossRef
2.
go back to reference Zhao Y, Li ZH, Jiang YN, Liu H, Feng YB, Wang ZH, Liu H, Wang JC, Yang B, Lin Q. Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. Acta Biomater. 2020;113:614–26.PubMedCrossRef Zhao Y, Li ZH, Jiang YN, Liu H, Feng YB, Wang ZH, Liu H, Wang JC, Yang B, Lin Q. Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. Acta Biomater. 2020;113:614–26.PubMedCrossRef
3.
go back to reference Mansoorianfar M, Khataee A, Riahi Z, Shahin K, Asadnia M, Razmjou A, Hojjati-Najafabadi A, Mei CT, Orooji Y, Li DG. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrason Sonochem. 2020;64:11.CrossRef Mansoorianfar M, Khataee A, Riahi Z, Shahin K, Asadnia M, Razmjou A, Hojjati-Najafabadi A, Mei CT, Orooji Y, Li DG. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrason Sonochem. 2020;64:11.CrossRef
4.
go back to reference Li S, Li X, Hou W, Nune KC, Misra RDK, Correa-Rodriguez VL, Guo Z, Hao Y, Yang R, Murr LE. Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci China Mater. 2018;61(4):525–36.CrossRef Li S, Li X, Hou W, Nune KC, Misra RDK, Correa-Rodriguez VL, Guo Z, Hao Y, Yang R, Murr LE. Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci China Mater. 2018;61(4):525–36.CrossRef
5.
go back to reference Zheng Y, Han Q, Wang J, Li D, Song Z, Yu J. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. ACS Biomater Sci Eng. 2020;6(9):5181–90.PubMedCrossRef Zheng Y, Han Q, Wang J, Li D, Song Z, Yu J. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. ACS Biomater Sci Eng. 2020;6(9):5181–90.PubMedCrossRef
6.
go back to reference Li ZH, Liu C, Wang BF, Wang CY, Wang ZH, Yang F, Gao CH, Liu H, Qin YG, Wang JC. Heat treatment effect on the mechanical properties, roughness and bone ingrowth capacity of 3D printing porous titanium alloy. RSC Adv. 2018;8(22):12471–83.CrossRefPubMedPubMedCentral Li ZH, Liu C, Wang BF, Wang CY, Wang ZH, Yang F, Gao CH, Liu H, Qin YG, Wang JC. Heat treatment effect on the mechanical properties, roughness and bone ingrowth capacity of 3D printing porous titanium alloy. RSC Adv. 2018;8(22):12471–83.CrossRefPubMedPubMedCentral
7.
go back to reference Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017;99B(2):267–75.CrossRef Liang H, Ji T, Zhang Y, Wang Y, Guo W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017;99B(2):267–75.CrossRef
8.
go back to reference Wu N, Li S, Liu Y, Zhang A, Chen B, Han Q, Wang J. Novel exploration of 3D printed personalized total elbow arthroplasty to solve the severe bone defect after internal fixation failure of comminuted distal humerus fracture A case report. Medicine. 2020;99(31):e21481. Wu N, Li S, Liu Y, Zhang A, Chen B, Han Q, Wang J. Novel exploration of 3D printed personalized total elbow arthroplasty to solve the severe bone defect after internal fixation failure of comminuted distal humerus fracture A case report. Medicine. 2020;99(31):e21481.
9.
go back to reference Zhang K, Han Q, Xu X, Jiang H, Ma L, Zhang Y, Yang K, Chen B, Wang J. Metal artifact reduction of orthopedics metal artifact reduction algorithm in total hip and knee arthroplasty. Medicine. 2020;99(11):e19268. Zhang K, Han Q, Xu X, Jiang H, Ma L, Zhang Y, Yang K, Chen B, Wang J. Metal artifact reduction of orthopedics metal artifact reduction algorithm in total hip and knee arthroplasty. Medicine. 2020;99(11):e19268.
10.
go back to reference Bai HT, Kyu-Cheol N, Wang ZH, Cui YT, Liu H, Liu H, Feng YB, Zhao Y, Lin Q, Li ZH. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers. J Tissue Eng. 2020;11:13.CrossRef Bai HT, Kyu-Cheol N, Wang ZH, Cui YT, Liu H, Liu H, Feng YB, Zhao Y, Lin Q, Li ZH. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers. J Tissue Eng. 2020;11:13.CrossRef
11.
go back to reference He J, Han X, Wang S, Zhang Y, Dai X, Liu B, Liu L, Zhao X. Cell sheets of co-cultured BMP-2-modified bone marrow stromal cells and endothelial progenitor cells accelerate bone regeneration in vitro. Exp Ther Med. 2019;18(5):3333–40.PubMedPubMedCentral He J, Han X, Wang S, Zhang Y, Dai X, Liu B, Liu L, Zhao X. Cell sheets of co-cultured BMP-2-modified bone marrow stromal cells and endothelial progenitor cells accelerate bone regeneration in vitro. Exp Ther Med. 2019;18(5):3333–40.PubMedPubMedCentral
12.
go back to reference Zhang X, Chen J, Pei X, Wang J, Wang Q, Jiang S, Huang C, Pei X. Enhanced Osseointegration of Porous Titanium Modified with Zeolitic Imidazolate Framework-8. ACS Appl Mater Interfaces. 2017;9(30):25171–83.PubMedCrossRef Zhang X, Chen J, Pei X, Wang J, Wang Q, Jiang S, Huang C, Pei X. Enhanced Osseointegration of Porous Titanium Modified with Zeolitic Imidazolate Framework-8. ACS Appl Mater Interfaces. 2017;9(30):25171–83.PubMedCrossRef
13.
go back to reference Li G, Cao H, Zhang W, Ding X, Yang G, Qiao Y, Liu X, Jiang X. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS Appl Mater Interfaces. 2016;8(6):3840–52.PubMedCrossRef Li G, Cao H, Zhang W, Ding X, Yang G, Qiao Y, Liu X, Jiang X. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS Appl Mater Interfaces. 2016;8(6):3840–52.PubMedCrossRef
14.
go back to reference Egashira K, Sumita Y, Zhong W, Takashi I, Ohba S, Nagai K, Asahina I. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2. Plos One. 2018;13(1):e0191099. Egashira K, Sumita Y, Zhong W, Takashi I, Ohba S, Nagai K, Asahina I. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2. Plos One. 2018;13(1):e0191099.
15.
go back to reference Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397–409.PubMedPubMedCentralCrossRef Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397–409.PubMedPubMedCentralCrossRef
16.
go back to reference Yu Y, Jin G, Xue Y, Wang D, Liu X, Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 2017;49:590–603.PubMedCrossRef Yu Y, Jin G, Xue Y, Wang D, Liu X, Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 2017;49:590–603.PubMedCrossRef
17.
go back to reference Zhao R, Chen S, Zhao W, Yang L, Yuan B, Voicu SI, Antoniac IV, Yang X, Zhu X, Zhang X. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Theranostics. 2020;10(4):1572–89.PubMedPubMedCentralCrossRef Zhao R, Chen S, Zhao W, Yang L, Yuan B, Voicu SI, Antoniac IV, Yang X, Zhu X, Zhang X. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Theranostics. 2020;10(4):1572–89.PubMedPubMedCentralCrossRef
18.
go back to reference Li Q, Wang Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomed. 2020;15:4659–76.CrossRef Li Q, Wang Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomed. 2020;15:4659–76.CrossRef
19.
go back to reference Tsai C-H, Liu S-C, Chung W-H, Wang S-W, Wu M-H, Tang C-H. Visfatin Increases VEGF-Dependent Angiogenesis of Endothelial Progenitor Cells during Osteoarthritis Progression. Cells. 2020;9(5):1315. Tsai C-H, Liu S-C, Chung W-H, Wang S-W, Wu M-H, Tang C-H. Visfatin Increases VEGF-Dependent Angiogenesis of Endothelial Progenitor Cells during Osteoarthritis Progression. Cells. 2020;9(5):1315.
20.
go back to reference Kong L, Wang Y, Wang H, Pan Q, Zuo R, Bai S, Zhang X, Lee WY, Kang Q, Li G. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Res Ther. 2021;12(1):47–47.PubMedPubMedCentralCrossRef Kong L, Wang Y, Wang H, Pan Q, Zuo R, Bai S, Zhang X, Lee WY, Kang Q, Li G. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Res Ther. 2021;12(1):47–47.PubMedPubMedCentralCrossRef
21.
go back to reference Li R, Atesok K, Nauth A, Wright D, Qamirani E, Whyne CM, Schemitsch EH. Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis. J Orthop Trauma. 2011;25(8):467–71.PubMedCrossRef Li R, Atesok K, Nauth A, Wright D, Qamirani E, Whyne CM, Schemitsch EH. Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis. J Orthop Trauma. 2011;25(8):467–71.PubMedCrossRef
22.
go back to reference Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M, Marzi I. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A. 2010;16(6):1961–70.PubMedCrossRef Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M, Marzi I. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A. 2010;16(6):1961–70.PubMedCrossRef
23.
go back to reference Zhao Y, Li ZH, Song SL, Yang KR, Liu H, Yang Z, Wang JC, Yang B, Lin Q. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater. 2019;29(31):12.CrossRef Zhao Y, Li ZH, Song SL, Yang KR, Liu H, Yang Z, Wang JC, Yang B, Lin Q. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater. 2019;29(31):12.CrossRef
24.
go back to reference Zhao Y, Li Z, Li Q, Yang L, Liu H, Yan R, Xiao L, Liu H, Wang J, Yang B, et al. Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromol Rapid Commun. 2020:2000441. Zhao Y, Li Z, Li Q, Yang L, Liu H, Yan R, Xiao L, Liu H, Wang J, Yang B, et al. Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromol Rapid Commun. 2020:2000441.
25.
go back to reference Mills DK, Luo Y, ElumaPlease provide page range for referencelai A, Esteve S, Karnik S, Yao S. Creating structured hydrogel microenvironments for regulating stem cell differentiation. Gels. 2020;6(4):47. Mills DK, Luo Y, ElumaPlease provide page range for referencelai A, Esteve S, Karnik S, Yao S. Creating structured hydrogel microenvironments for regulating stem cell differentiation. Gels. 2020;6(4):47.
26.
go back to reference Beard MC, Cobb LH, Grant CS, Varadarajan A, Henry T, Swanson EA, Kundu S, Priddy LB. Autoclaving of Poloxamer 407 hydrogel and its use as a drug delivery vehicle. J Biomed Mater Res B Appl Biomater. 2021;109(3):338–47.PubMedCrossRef Beard MC, Cobb LH, Grant CS, Varadarajan A, Henry T, Swanson EA, Kundu S, Priddy LB. Autoclaving of Poloxamer 407 hydrogel and its use as a drug delivery vehicle. J Biomed Mater Res B Appl Biomater. 2021;109(3):338–47.PubMedCrossRef
27.
go back to reference Hsieh H-Y, Lin W-Y, Lee AL, Li Y-C, Chen Y-J, Chen K-C, Young T-H. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. Plos One. 2020;15(3):e0227784. Hsieh H-Y, Lin W-Y, Lee AL, Li Y-C, Chen Y-J, Chen K-C, Young T-H. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. Plos One. 2020;15(3):e0227784.
28.
go back to reference Santimetaneedol A, Wang Z, Arteaga DN, Aksit A, Prevoteau C, Yu M, Chiang H, Fafalis D, Lalwani AK, Kysar JW. Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407. Colloids Surf B Biointerfaces. 2019;182:110300. Santimetaneedol A, Wang Z, Arteaga DN, Aksit A, Prevoteau C, Yu M, Chiang H, Fafalis D, Lalwani AK, Kysar JW. Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407. Colloids Surf B Biointerfaces. 2019;182:110300.
29.
go back to reference Li Y, Li L, Ma Y, Zhang K, Li G, Lu B, Lu C, Chen C, Wang L, Wang H, et al. 3D-Printed Titanium Cage with PVA-Vancomycin Coating Prevents Surgical Site Infections (SSIs). Macromol Biosci. 2020;20(3):e1900394. Li Y, Li L, Ma Y, Zhang K, Li G, Lu B, Lu C, Chen C, Wang L, Wang H, et al. 3D-Printed Titanium Cage with PVA-Vancomycin Coating Prevents Surgical Site Infections (SSIs). Macromol Biosci. 2020;20(3):e1900394.
30.
go back to reference Gao P, Fan B, Yu XM, Liu WW, Wu J, Shi L, Yang D, Tan LL, Wan P, Hao YL, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020;5(3):680–93.PubMedPubMedCentralCrossRef Gao P, Fan B, Yu XM, Liu WW, Wu J, Shi L, Yang D, Tan LL, Wan P, Hao YL, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020;5(3):680–93.PubMedPubMedCentralCrossRef
31.
go back to reference Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–14.PubMedPubMedCentralCrossRef Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–14.PubMedPubMedCentralCrossRef
32.
go back to reference Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2020;106:110289–110289.PubMedCrossRef Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2020;106:110289–110289.PubMedCrossRef
33.
go back to reference Li Z, Wang C, Li C, Wang Z, Yang F, Liu H, Qin Y, Wang J. What we have achieved in the design of 3D printed metal implants for application in orthopedics? Personal experience and review. Rapid Prototyping J. 2018;24(8):1365–79.CrossRef Li Z, Wang C, Li C, Wang Z, Yang F, Liu H, Qin Y, Wang J. What we have achieved in the design of 3D printed metal implants for application in orthopedics? Personal experience and review. Rapid Prototyping J. 2018;24(8):1365–79.CrossRef
34.
go back to reference Kumar A, Nune KC, Misra RDK. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. J Tissue Eng Regen Med. 2018;12(4):1133–44.PubMedCrossRef Kumar A, Nune KC, Misra RDK. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. J Tissue Eng Regen Med. 2018;12(4):1133–44.PubMedCrossRef
35.
go back to reference Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New Developments of Ti-Based alloys for biomedical applications. Materials (Basel). 2014;7(3):1709–800.PubMedCentralCrossRef Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New Developments of Ti-Based alloys for biomedical applications. Materials (Basel). 2014;7(3):1709–800.PubMedCentralCrossRef
36.
go back to reference Li G, Wang L, Pan W, Yang F, Jiang W, Wu X, Kong X, Dai K, Hao Y. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep. 2016;6:34072.PubMedPubMedCentralCrossRef Li G, Wang L, Pan W, Yang F, Jiang W, Wu X, Kong X, Dai K, Hao Y. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep. 2016;6:34072.PubMedPubMedCentralCrossRef
37.
go back to reference Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.PubMedCrossRef Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.PubMedCrossRef
38.
go back to reference Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2020;106:110289.PubMedCrossRef Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2020;106:110289.PubMedCrossRef
39.
go back to reference Luan H, Wang L, Ren W, Chu Z, Huang Y, Lu C, Fan Y. The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits. Sci China Tech Sci. 2019;62(7):1160–8.CrossRef Luan H, Wang L, Ren W, Chu Z, Huang Y, Lu C, Fan Y. The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits. Sci China Tech Sci. 2019;62(7):1160–8.CrossRef
40.
go back to reference Ghiasi M, Kalhor N, Qomi RT, Sheykhhasan M. The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. Front Life Sci. 2016;9(1):32–43.CrossRef Ghiasi M, Kalhor N, Qomi RT, Sheykhhasan M. The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. Front Life Sci. 2016;9(1):32–43.CrossRef
41.
go back to reference Mehendale SV, Mellor LF, Taylor MA, Loboa EG, Shirwaiker RA. Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cell viability and proliferation. Rapid Prototyping J. 2017;23(3):534–42.CrossRef Mehendale SV, Mellor LF, Taylor MA, Loboa EG, Shirwaiker RA. Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cell viability and proliferation. Rapid Prototyping J. 2017;23(3):534–42.CrossRef
42.
go back to reference Bai HT, Zhao Y, Wang CY, Wang ZH, Wang JC, Liu H, Feng YB, Lin Q, Li ZH, Liu H. Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation. Theranostics. 2020;10(11):4779–94.PubMedPubMedCentralCrossRef Bai HT, Zhao Y, Wang CY, Wang ZH, Wang JC, Liu H, Feng YB, Lin Q, Li ZH, Liu H. Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation. Theranostics. 2020;10(11):4779–94.PubMedPubMedCentralCrossRef
43.
go back to reference Bai HT, Cui YT, Wang CY, Wang ZH, Luo WB, Liu YZ, Leng Y, Wang JC, Li ZH, Liu H. 3D printed porous biomimetic composition sustained release zoledronate to promote osteointegration of osteoporotic defects. Mater Design. 2020;189:11. Bai HT, Cui YT, Wang CY, Wang ZH, Luo WB, Liu YZ, Leng Y, Wang JC, Li ZH, Liu H. 3D printed porous biomimetic composition sustained release zoledronate to promote osteointegration of osteoporotic defects. Mater Design. 2020;189:11.
45.
go back to reference Wu J, Cao L, Liu Y, Zheng A, Jiao D, Zeng D, Wang X, Kaplan DL, Jiang X. Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces. 2019;11(9):8878–95.PubMedCrossRef Wu J, Cao L, Liu Y, Zheng A, Jiao D, Zeng D, Wang X, Kaplan DL, Jiang X. Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces. 2019;11(9):8878–95.PubMedCrossRef
46.
go back to reference Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(epsilon-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics. 2020;10(2):725–40.PubMedPubMedCentralCrossRef Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(epsilon-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics. 2020;10(2):725–40.PubMedPubMedCentralCrossRef
47.
go back to reference Lovati AB, Lopa S, Talo G, Previdi S, Recordati C, Mercuri D, Segatti F, Zagra L, Moretti M. In vivo evaluation of bone deposition in macroporous titanium implants loaded with mesenchymal stem cells and strontium-enriched hydrogel. J Biomed Mater Res B Appl Biomater. 2015;103(2):448–56.PubMedCrossRef Lovati AB, Lopa S, Talo G, Previdi S, Recordati C, Mercuri D, Segatti F, Zagra L, Moretti M. In vivo evaluation of bone deposition in macroporous titanium implants loaded with mesenchymal stem cells and strontium-enriched hydrogel. J Biomed Mater Res B Appl Biomater. 2015;103(2):448–56.PubMedCrossRef
48.
go back to reference Lv J, Xiu P, Tan J, Jia ZJ, Cai H, Liu ZJ. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomed Mater. 2015;10(3):10.CrossRef Lv J, Xiu P, Tan J, Jia ZJ, Cai H, Liu ZJ. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomed Mater. 2015;10(3):10.CrossRef
49.
go back to reference Wang C, Lai J, Li K, Zhu S, Lu B, Liu J, Tang Y, Wei Y. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater. 2021;6(1):137–45.PubMedCrossRef Wang C, Lai J, Li K, Zhu S, Lu B, Liu J, Tang Y, Wei Y. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater. 2021;6(1):137–45.PubMedCrossRef
50.
go back to reference Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F, Sun L. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11(1):496. Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F, Sun L. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11(1):496.
51.
go back to reference Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. 2020;101:26–42.PubMedCrossRef Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. 2020;101:26–42.PubMedCrossRef
52.
go back to reference Lee B-N, Hong J-U, Kim S-M, Jang J-H, Chang H-S, Hwang Y-C, Hwang I-N, Oh W-M. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers. J Endod. 2019;45(1):73–8.PubMedCrossRef Lee B-N, Hong J-U, Kim S-M, Jang J-H, Chang H-S, Hwang Y-C, Hwang I-N, Oh W-M. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers. J Endod. 2019;45(1):73–8.PubMedCrossRef
53.
go back to reference Rashdan NA, Sim AM, Cui L, Phadwal K, Roberts FL, Carter R, Ozdemir DD, Hohenstein P, Hung J, Kaczynski J, et al. Osteocalcin regulates arterial calcification via altered Wnt signaling and glucose metabolism. J Bone Miner Res. 2020;35(2):357–67.PubMedCrossRef Rashdan NA, Sim AM, Cui L, Phadwal K, Roberts FL, Carter R, Ozdemir DD, Hohenstein P, Hung J, Kaczynski J, et al. Osteocalcin regulates arterial calcification via altered Wnt signaling and glucose metabolism. J Bone Miner Res. 2020;35(2):357–67.PubMedCrossRef
54.
go back to reference Omorphos NP, Gao C, Tan SS, Sangha MS. Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol Biol Rep. 2021;48(1):941–50. Omorphos NP, Gao C, Tan SS, Sangha MS. Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol Biol Rep. 2021;48(1):941–50.
Metadata
Title
3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis
Authors
Heng Zhao
Shi Shen
Lu Zhao
Yulin Xu
Yang Li
Naiqiang Zhuo
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Bone Defect
Published in
BMC Musculoskeletal Disorders / Issue 1/2021
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-021-04617-7

Other articles of this Issue 1/2021

BMC Musculoskeletal Disorders 1/2021 Go to the issue