Skip to main content
Top
Published in: BMC Oral Health 1/2022

Open Access 01-12-2022 | Bone Defect | Research

3D printed scaffold for repairing bone defects in apical periodontitis

Authors: Cong Li, Xiaoyin Xu, Jing Gao, Xiaoyan Zhang, Yao Chen, Ruixin Li, Jing Shen

Published in: BMC Oral Health | Issue 1/2022

Login to get access

Abstract

Objectives

To investigate the feasibility of the 3D printed scaffold for periapical bone defects.

Methods

In this study, antimicrobial peptide KSL-W-loaded PLGA sustainable-release microspheres (KSL-W@PLGA) were firstly prepared followed by assessing the drug release behavior and bacteriostatic ability against Enterococcus faecalis and Porphyromonas gingivalis. After that, we demonstrated that KSL-W@PLGA/collagen (COL)/silk fibroin (SF)/nano-hydroxyapatite (nHA) (COL/SF/nHA) scaffold via 3D-printing technique exhibited significantly good biocompatibility and osteoconductive property. The scaffold was characterized as to pore size, porosity, water absorption expansion rate and mechanical properties. Moreover, MC3T3-E1 cells were seeded into sterile scaffold materials and investigated by CCK-8, SEM and HE staining. In the animal experiment section, we constructed bone defect models of the mandible and evaluated its effect on bone formation. The Japanese white rabbits were killed at 1 and 2 months after surgery, the cone beam computerized tomography (CBCT) and micro-CT scanning, as well as HE and Masson staining analysis were performed on the samples of the operation area, respectively. Data analysis was done using ANOVA and LSD tests. (α = 0.05).

Results

We observed that the KSL-W@PLGA sustainable-release microspheres prepared in the experiment were uniform in morphology and could gradually release the antimicrobial peptide (KSL-W), which had a long-term antibacterial effect for at least up to 10 days. HE staining and SEM showed that the scaffold had good biocompatibility, which was conducive to the adhesion and proliferation of MC3T3-E1 cells. The porosity and water absorption of the scaffold were (81.96 ± 1.83)% and (458.29 ± 29.79)%, respectively. Histological and radiographic studies showed that the bone healing efficacy of the scaffold was satisfactory.

Conclusions

The KSL-W@PLGA/COL/SF/nHA scaffold possessed good biocompatibility and bone repairing ability, and had potential applications in repairing infected bone defects.
Clinical significance The 3D printed scaffold not only has an antibacterial effect, but can also promote bone tissue formation, which provides an alternative therapy option in apical periodontitis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Araújo M, Carmagnola D, Berglundh T, Thilander B, Lindhe J. Orthodontic movement in bone defects augmented with Bio-Oss®: an experimental study in dogs. J Clin Periodontol. 2001;28(1):73–80.PubMedCrossRef Araújo M, Carmagnola D, Berglundh T, Thilander B, Lindhe J. Orthodontic movement in bone defects augmented with Bio-Oss®: an experimental study in dogs. J Clin Periodontol. 2001;28(1):73–80.PubMedCrossRef
2.
go back to reference Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018;3(1):129–38.PubMedCrossRef Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018;3(1):129–38.PubMedCrossRef
3.
go back to reference Wani SUD, Gautam SP, Qadrie ZL, Gangadharappa H. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-a review. Int J Biol Macromol. 2020;163:2145–61.PubMedCrossRef Wani SUD, Gautam SP, Qadrie ZL, Gangadharappa H. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-a review. Int J Biol Macromol. 2020;163:2145–61.PubMedCrossRef
4.
go back to reference Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23(1):1–11.CrossRef Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23(1):1–11.CrossRef
5.
go back to reference Bernegossi J, Fontana CR, Caiaffa KS, Duque C, Chorilli M. Inhibitory effect of a KSL-W peptide-loaded poloxamer 407-based microemulsions for buccal delivery on Fusobacterium nucleatum biofilm. J Biomed Nanotechnol. 2020;16(3):390–7.PubMedCrossRef Bernegossi J, Fontana CR, Caiaffa KS, Duque C, Chorilli M. Inhibitory effect of a KSL-W peptide-loaded poloxamer 407-based microemulsions for buccal delivery on Fusobacterium nucleatum biofilm. J Biomed Nanotechnol. 2020;16(3):390–7.PubMedCrossRef
6.
go back to reference Kirkwood B, Miller M, Milleman J, Milleman K, Leung K. Four-day plaque regrowth evaluation of a peptide chewing gum in a double-blind randomized clinical trial. Clin Exp Dent Res. 2020;6(3):318–27.PubMedCrossRef Kirkwood B, Miller M, Milleman J, Milleman K, Leung K. Four-day plaque regrowth evaluation of a peptide chewing gum in a double-blind randomized clinical trial. Clin Exp Dent Res. 2020;6(3):318–27.PubMedCrossRef
7.
go back to reference Tang Z, Ma Q, Chen X, Chen T, Ying Y, Xi X, Wang L, Ma C, Shaw C, Zhou MJA. Recent advances and challenges in nanodelivery systems for antimicrobial peptides (AMPs). Antibiotics. 2021;10(8):990.PubMedPubMedCentralCrossRef Tang Z, Ma Q, Chen X, Chen T, Ying Y, Xi X, Wang L, Ma C, Shaw C, Zhou MJA. Recent advances and challenges in nanodelivery systems for antimicrobial peptides (AMPs). Antibiotics. 2021;10(8):990.PubMedPubMedCentralCrossRef
8.
go back to reference Abulateefeh SR, Alkilany AM. Synthesis and characterization of PLGA shell microcapsules containing aqueous cores prepared by internal phase separation. AAPS PharmSciTech. 2016;17(4):891–7.PubMedCrossRef Abulateefeh SR, Alkilany AM. Synthesis and characterization of PLGA shell microcapsules containing aqueous cores prepared by internal phase separation. AAPS PharmSciTech. 2016;17(4):891–7.PubMedCrossRef
9.
go back to reference Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Controll Release. 2012;161(2):505–22.CrossRef Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Controll Release. 2012;161(2):505–22.CrossRef
10.
go back to reference Yoo J, Won Y-Y. Engineering phenomenology of the initial burst release of drugs from PLGA microparticles. CS Biomater Sci Eng. 2020;6(11):6053–62.CrossRef Yoo J, Won Y-Y. Engineering phenomenology of the initial burst release of drugs from PLGA microparticles. CS Biomater Sci Eng. 2020;6(11):6053–62.CrossRef
11.
go back to reference Yao S, Liu H, Yu S, Li Y, Wang X, Wang L. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior. Regen Biomater. 2016;3(5):309–17.PubMedPubMedCentralCrossRef Yao S, Liu H, Yu S, Li Y, Wang X, Wang L. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior. Regen Biomater. 2016;3(5):309–17.PubMedPubMedCentralCrossRef
12.
go back to reference Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.PubMedPubMedCentralCrossRef Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.PubMedPubMedCentralCrossRef
13.
go back to reference Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9(4):153–74.PubMedPubMedCentralCrossRef Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9(4):153–74.PubMedPubMedCentralCrossRef
14.
go back to reference Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm. 2021;607:120907.PubMedCrossRef Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm. 2021;607:120907.PubMedCrossRef
15.
go back to reference Natarajan S, Remick DG. The ELISA standard save: calculation of sample concentrations in assays with a failed standard curve. J Immunol Methods. 2008;336(2):242–5.PubMedPubMedCentralCrossRef Natarajan S, Remick DG. The ELISA standard save: calculation of sample concentrations in assays with a failed standard curve. J Immunol Methods. 2008;336(2):242–5.PubMedPubMedCentralCrossRef
16.
go back to reference Bao Y, Wang S, Li H, Wang Y, Chen H, Yuan M. Characterization, stability and biological activity in vitro of cathelicidin-BF-30 loaded 4-arm star-shaped PEG-PLGA microspheres. Molecules. 2018;23(2):497.PubMedCentralCrossRef Bao Y, Wang S, Li H, Wang Y, Chen H, Yuan M. Characterization, stability and biological activity in vitro of cathelicidin-BF-30 loaded 4-arm star-shaped PEG-PLGA microspheres. Molecules. 2018;23(2):497.PubMedCentralCrossRef
17.
go back to reference Ibrahim MA, Ismail A, Fetouh MI, Göpferich A. Stability of insulin during the erosion of poly (lactic acid) and poly (lactic-co-glycolic acid) microspheres. J Controll Release. 2005;106(3):241–52.CrossRef Ibrahim MA, Ismail A, Fetouh MI, Göpferich A. Stability of insulin during the erosion of poly (lactic acid) and poly (lactic-co-glycolic acid) microspheres. J Controll Release. 2005;106(3):241–52.CrossRef
18.
go back to reference Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm. 2007;334(1–2):137–48.PubMedCrossRef Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm. 2007;334(1–2):137–48.PubMedCrossRef
19.
go back to reference Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.PubMedCrossRef Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.PubMedCrossRef
20.
go back to reference Ali M, Walboomers XF, Jansen JA, Yang F. Influence of formulation parameters on encapsulation of doxycycline in PLGA microspheres prepared by double emulsion technique for the treatment of periodontitis. J Drug Deliv Sci Technol. 2019;52:263–71.CrossRef Ali M, Walboomers XF, Jansen JA, Yang F. Influence of formulation parameters on encapsulation of doxycycline in PLGA microspheres prepared by double emulsion technique for the treatment of periodontitis. J Drug Deliv Sci Technol. 2019;52:263–71.CrossRef
21.
go back to reference Yang Y-Y, Chung T-S, Bai X-L, Chan W-K. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem Eng Sci. 2000;55(12):2223–36.CrossRef Yang Y-Y, Chung T-S, Bai X-L, Chan W-K. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem Eng Sci. 2000;55(12):2223–36.CrossRef
22.
go back to reference Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Controll Release. 2000;69(1):81–96.CrossRef Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Controll Release. 2000;69(1):81–96.CrossRef
23.
go back to reference Guo W, Quan P, Fang L, Cun D, Yang M. Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci. 2015;10(5):405–14.CrossRef Guo W, Quan P, Fang L, Cun D, Yang M. Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci. 2015;10(5):405–14.CrossRef
24.
go back to reference Diao WR, Hu QP, Zhang H, Xu JG. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 2014;35(1):109–16.CrossRef Diao WR, Hu QP, Zhang H, Xu JG. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 2014;35(1):109–16.CrossRef
25.
go back to reference Jiang S, Yu Z, Zhang L, Wang G, Dai X, Lian X, Zou H. Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regen Biomater. 2021;8(4):rbab028.PubMedPubMedCentralCrossRef Jiang S, Yu Z, Zhang L, Wang G, Dai X, Lian X, Zou H. Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regen Biomater. 2021;8(4):rbab028.PubMedPubMedCentralCrossRef
26.
go back to reference Fan Y. Li F, Zou H, Xu Z, Liu H, Luo R, Zhang G, Li R, Yan Y, Liu H. Photothermal effect of indocyanine green modified scaffold inhibits oral squamous cell carcinoma and promotes wound healing. 2022;212811. Fan Y. Li F, Zou H, Xu Z, Liu H, Luo R, Zhang G, Li R, Yan Y, Liu H. Photothermal effect of indocyanine green modified scaffold inhibits oral squamous cell carcinoma and promotes wound healing. 2022;212811.
27.
go back to reference Liu H, Qiu L, Liu H, Li F, Fan Y, Meng L, Sun X, Zhan C, Luo R, Wang CJ. Effects of fiber cross-angle structures on the mechanical property of 3D printed scaffolds and performance of seeded MC3T3-E1 cells. ACS Omega. 2021;6(49):33665–75.PubMedPubMedCentralCrossRef Liu H, Qiu L, Liu H, Li F, Fan Y, Meng L, Sun X, Zhan C, Luo R, Wang CJ. Effects of fiber cross-angle structures on the mechanical property of 3D printed scaffolds and performance of seeded MC3T3-E1 cells. ACS Omega. 2021;6(49):33665–75.PubMedPubMedCentralCrossRef
28.
go back to reference Li F, Yan Y, Wang Y, Fan Y, Zou H, Liu H, Luo R, Li R, Liu H. A bifunctional MXene-modified scaffold for photothermal therapy and maxillofacial tissue regeneration. Regen Biomater. 2021;8(6):rbab057.CrossRef Li F, Yan Y, Wang Y, Fan Y, Zou H, Liu H, Luo R, Li R, Liu H. A bifunctional MXene-modified scaffold for photothermal therapy and maxillofacial tissue regeneration. Regen Biomater. 2021;8(6):rbab057.CrossRef
29.
go back to reference Paulo MJE, Dos Santos MA, Cimatti B, Gava NF, Riberto M, Engel EE. Osteointegration of porous absorbable bone substitutes: a systematic review of the literature. Clinics. 2017;72:449–53.PubMedPubMedCentralCrossRef Paulo MJE, Dos Santos MA, Cimatti B, Gava NF, Riberto M, Engel EE. Osteointegration of porous absorbable bone substitutes: a systematic review of the literature. Clinics. 2017;72:449–53.PubMedPubMedCentralCrossRef
30.
go back to reference Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018;79:265–75.PubMedCrossRef Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018;79:265–75.PubMedCrossRef
31.
go back to reference Kubosch EJ, Bernstein A, Wolf L, Fretwurst T, Nelson K, Schmal H. Clinical trial and in-vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts. BMC Musculoskelet Disord. 2016;17(1):1–17. Kubosch EJ, Bernstein A, Wolf L, Fretwurst T, Nelson K, Schmal H. Clinical trial and in-vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts. BMC Musculoskelet Disord. 2016;17(1):1–17.
32.
go back to reference Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. J Biosci Bioeng. 2014;118(5):593–8.PubMedCrossRef Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. J Biosci Bioeng. 2014;118(5):593–8.PubMedCrossRef
33.
go back to reference Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL. Silk–hydroxyapatite nanoscale scaffolds with programmable growth factor delivery for bone repair. ACS Appl Mater Interfaces. 2016;8(37):24463–70.PubMedCrossRef Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL. Silk–hydroxyapatite nanoscale scaffolds with programmable growth factor delivery for bone repair. ACS Appl Mater Interfaces. 2016;8(37):24463–70.PubMedCrossRef
34.
go back to reference Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials. 2015;52:358–66.PubMedCrossRef Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials. 2015;52:358–66.PubMedCrossRef
35.
go back to reference English BK, Gaur AH, The use and abuse of antibiotics and the development of antibiotic resistance 2010;73–82. English BK, Gaur AH, The use and abuse of antibiotics and the development of antibiotic resistance 2010;73–82.
36.
go back to reference Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645.PubMedPubMedCentralCrossRef Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645.PubMedPubMedCentralCrossRef
38.
go back to reference Baltzer SA, Brown MH. Antimicrobial peptides: promising alternatives to conventional antibiotics. Microb Physiol. 2011;20(4):228–35.CrossRef Baltzer SA, Brown MH. Antimicrobial peptides: promising alternatives to conventional antibiotics. Microb Physiol. 2011;20(4):228–35.CrossRef
39.
go back to reference Bechinger B, Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017;96(3):254–60.PubMedCrossRef Bechinger B, Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017;96(3):254–60.PubMedCrossRef
40.
go back to reference Deslouches B, Hasek ML, Craigo JK, Steckbeck JD, Montelaro RC. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J Med Microbiol. 2016;65(6):554.PubMedPubMedCentralCrossRef Deslouches B, Hasek ML, Craigo JK, Steckbeck JD, Montelaro RC. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J Med Microbiol. 2016;65(6):554.PubMedPubMedCentralCrossRef
41.
go back to reference Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;2020(11):2559. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;2020(11):2559.
42.
go back to reference Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv. 2020;6(18):eaay6817.PubMedPubMedCentralCrossRef Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv. 2020;6(18):eaay6817.PubMedPubMedCentralCrossRef
43.
go back to reference Mwila C, Walker RB. Improved stability of rifampicin in the presence of gastric-resistant isoniazid microspheres in acidic media. Pharmaceutics. 2020;12(3):234.PubMedCentralCrossRef Mwila C, Walker RB. Improved stability of rifampicin in the presence of gastric-resistant isoniazid microspheres in acidic media. Pharmaceutics. 2020;12(3):234.PubMedCentralCrossRef
44.
go back to reference Gerdts V, Mutwiri G, Richards J, Potter AA. Carrier molecules for use in veterinary vaccines. Vaccine. 2013;31(4):596–602.PubMedCrossRef Gerdts V, Mutwiri G, Richards J, Potter AA. Carrier molecules for use in veterinary vaccines. Vaccine. 2013;31(4):596–602.PubMedCrossRef
45.
go back to reference Lee WY, Asadujjaman M, Jee JP. Long acting injectable formulations: the state of the arts and challenges of poly (lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Investig. 2019;49(4):459–76.CrossRef Lee WY, Asadujjaman M, Jee JP. Long acting injectable formulations: the state of the arts and challenges of poly (lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Investig. 2019;49(4):459–76.CrossRef
46.
go back to reference Wang S, Deng Z, Ye X, Geng X, Zhang C. Enterococcus faecalis attenuates osteogenesis through activation of p38 and ERK1/2 pathways in MC3T3-E1 cells. Inte Endod J. 2016;49(12):1152–64.CrossRef Wang S, Deng Z, Ye X, Geng X, Zhang C. Enterococcus faecalis attenuates osteogenesis through activation of p38 and ERK1/2 pathways in MC3T3-E1 cells. Inte Endod J. 2016;49(12):1152–64.CrossRef
47.
go back to reference Qian W, Ma T, Ye M, Li Z, Liu Y, Hao P. Microbiota in the apical root canal system of tooth with apical periodontitis. BMC Genom. 2019;20(2):175–85. Qian W, Ma T, Ye M, Li Z, Liu Y, Hao P. Microbiota in the apical root canal system of tooth with apical periodontitis. BMC Genom. 2019;20(2):175–85.
48.
go back to reference Wang Q, Zhou XD, Zheng QH, Wang Y, Tang L, Huang DM. Distribution of Porphyromonas gingivalis fimA genotypes in chronic apical periodontitis associated with symptoms. J Endod. 2010;36(11):1790–5.PubMedCrossRef Wang Q, Zhou XD, Zheng QH, Wang Y, Tang L, Huang DM. Distribution of Porphyromonas gingivalis fimA genotypes in chronic apical periodontitis associated with symptoms. J Endod. 2010;36(11):1790–5.PubMedCrossRef
49.
go back to reference Teng F, Liu YL. In In vitro evaluation of biomimetic incorporation and release kinetics of bmp2 on functionalized bio-oss® block, Key Engineering Materials, Trans Tech Publ: 2017; pp. 7–11. Teng F, Liu YL. In In vitro evaluation of biomimetic incorporation and release kinetics of bmp2 on functionalized bio-oss® block, Key Engineering Materials, Trans Tech Publ: 2017; pp. 7–11.
50.
go back to reference Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implant. 1999;14(6):835–40. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implant. 1999;14(6):835–40.
51.
go back to reference Wang H, Deng Z, Chen J, Qi X, Pang L, Lin B, Adib YTY, Miao N, Wang D, Zhang YJ. A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo. Int J Biol Sci. 2020;16(11):1821.PubMedPubMedCentralCrossRef Wang H, Deng Z, Chen J, Qi X, Pang L, Lin B, Adib YTY, Miao N, Wang D, Zhang YJ. A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo. Int J Biol Sci. 2020;16(11):1821.PubMedPubMedCentralCrossRef
52.
go back to reference Fu Z, Cui J, Zhao B, Shen SG, Lin K. An overview of polyester/hydroxyapatite composites for bone tissue repairing. J Orthop Transl. 2021;28:118–30. Fu Z, Cui J, Zhao B, Shen SG, Lin K. An overview of polyester/hydroxyapatite composites for bone tissue repairing. J Orthop Transl. 2021;28:118–30.
53.
go back to reference Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in bone tissue regeneration: stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution. Int J Mol Sci. 2020;22(1):192.PubMedCentralCrossRef Riester O, Borgolte M, Csuk R, Deigner HP. Challenges in bone tissue regeneration: stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution. Int J Mol Sci. 2020;22(1):192.PubMedCentralCrossRef
54.
go back to reference Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016;8(2):42.PubMedCentralCrossRef Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016;8(2):42.PubMedCentralCrossRef
55.
go back to reference Vidya M, Rajagopal S. Silk fibroin: a promising tool for wound healing and skin regeneration. 2021; 2021. Vidya M, Rajagopal S. Silk fibroin: a promising tool for wound healing and skin regeneration. 2021; 2021.
56.
go back to reference Long D, Xiao B, Merlin DJN. Genetically modified silk fibroin nanoparticles for drug delivery: preparation strategies and application prospects. Fut Med. 2020;15:1739–42. Long D, Xiao B, Merlin DJN. Genetically modified silk fibroin nanoparticles for drug delivery: preparation strategies and application prospects. Fut Med. 2020;15:1739–42.
57.
go back to reference Asadpour S, Kargozar S, Moradi L, Ai A, Nosrati H, Ai J. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications. Int J Biol Macromol. 2020;154:1285–94.PubMedCrossRef Asadpour S, Kargozar S, Moradi L, Ai A, Nosrati H, Ai J. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications. Int J Biol Macromol. 2020;154:1285–94.PubMedCrossRef
58.
go back to reference Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv. 2018;36(1):68–91.PubMedCrossRef Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv. 2018;36(1):68–91.PubMedCrossRef
59.
go back to reference Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, Wang L, Wang K, Zhou C, Liu LJ. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B: Eng. 2021;224:109192.CrossRef Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, Wang L, Wang K, Zhou C, Liu LJ. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos Part B: Eng. 2021;224:109192.CrossRef
60.
go back to reference Shakya AK, Kandalam U. Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br J Oral Maxillofac Surg. 2017;55(9):875–91.PubMedCrossRef Shakya AK, Kandalam U. Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br J Oral Maxillofac Surg. 2017;55(9):875–91.PubMedCrossRef
61.
go back to reference Zhang YS, Zhu C, Xia Y. Inverse opal scaffolds and their biomedical applications. Adv Mater. 2017;29(33):1701115.CrossRef Zhang YS, Zhu C, Xia Y. Inverse opal scaffolds and their biomedical applications. Adv Mater. 2017;29(33):1701115.CrossRef
62.
go back to reference Feng B, Jinkang Z, Zhen W, Jianxi L, Jiang C, Jian L, Guolin M, Xin D. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater. 2011;6(1):015007.PubMedCrossRef Feng B, Jinkang Z, Zhen W, Jianxi L, Jiang C, Jian L, Guolin M, Xin D. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater. 2011;6(1):015007.PubMedCrossRef
63.
go back to reference Boekema BK, Vlig M, Olde Damink L, Middelkoop E, Eummelen L, Bühren AV, Ulrich MM. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing. J Mater Sci: Mater Med. 2014;25(2):423–33. Boekema BK, Vlig M, Olde Damink L, Middelkoop E, Eummelen L, Bühren AV, Ulrich MM. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing. J Mater Sci: Mater Med. 2014;25(2):423–33.
64.
go back to reference Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng. 2020;106:110289.CrossRef Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng. 2020;106:110289.CrossRef
65.
go back to reference Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Pattanayak DK, Matsushita T, Sasaki K, Nishida N, Kokubo T. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 2011;7(5):2327–36.PubMedCrossRef Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Pattanayak DK, Matsushita T, Sasaki K, Nishida N, Kokubo T. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 2011;7(5):2327–36.PubMedCrossRef
66.
go back to reference Pecci R, Baiguera S, Ioppolo P, Bedini R, Del Gaudio C. 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: manufacturing and characterization. J Mech Behav Biomed Mater. 2020;103:103583.PubMedCrossRef Pecci R, Baiguera S, Ioppolo P, Bedini R, Del Gaudio C. 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: manufacturing and characterization. J Mech Behav Biomed Mater. 2020;103:103583.PubMedCrossRef
67.
go back to reference Luo C, Wang C, Wu X, Xie X, Wang C, Zhao C, Zou C, Lv F, Huang W, Liao J. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology. Mater Sci Eng: C. 2021;129:112382.CrossRef Luo C, Wang C, Wu X, Xie X, Wang C, Zhao C, Zou C, Lv F, Huang W, Liao J. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology. Mater Sci Eng: C. 2021;129:112382.CrossRef
68.
go back to reference Tang X, Qin Y, Xu X, Guo D, Ye W, Wu W, Li R. Fabrication and in vitro evaluation of 3D printed porous polyetherimide scaffolds for bone tissue engineering. 2019;2019. Tang X, Qin Y, Xu X, Guo D, Ye W, Wu W, Li R. Fabrication and in vitro evaluation of 3D printed porous polyetherimide scaffolds for bone tissue engineering. 2019;2019.
Metadata
Title
3D printed scaffold for repairing bone defects in apical periodontitis
Authors
Cong Li
Xiaoyin Xu
Jing Gao
Xiaoyan Zhang
Yao Chen
Ruixin Li
Jing Shen
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Bone Defect
Published in
BMC Oral Health / Issue 1/2022
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-022-02362-4

Other articles of this Issue 1/2022

BMC Oral Health 1/2022 Go to the issue