Skip to main content
Top
Published in: Anatomical Science International 1/2012

01-03-2012 | Review article

Body plan of turtles: an anatomical, developmental and evolutionary perspective

Authors: Hiroshi Nagashima, Shigehiro Kuraku, Katsuhisa Uchida, Yoshie Kawashima-Ohya, Yuichi Narita, Shigeru Kuratani

Published in: Anatomical Science International | Issue 1/2012

Login to get access

Abstract

The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.
Literature
go back to reference Aoyama H, Asamoto K (2000) The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech Dev 99:71–82PubMedCrossRef Aoyama H, Asamoto K (2000) The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech Dev 99:71–82PubMedCrossRef
go back to reference Aoyama H, Mizutani-koseki S, Koseki H (2005) Three developmental compartments involved in rib formation. Int J Dev Biol 49:325–333PubMedCrossRef Aoyama H, Mizutani-koseki S, Koseki H (2005) Three developmental compartments involved in rib formation. Int J Dev Biol 49:325–333PubMedCrossRef
go back to reference Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730PubMedCrossRef Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730PubMedCrossRef
go back to reference Braun T, Arnold HH (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J 14:1176–1186PubMed Braun T, Arnold HH (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J 14:1176–1186PubMed
go back to reference Braun T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120:3083–3092PubMed Braun T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120:3083–3092PubMed
go back to reference Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382PubMedCrossRef Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382PubMedCrossRef
go back to reference Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528PubMedCrossRef Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528PubMedCrossRef
go back to reference Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 18:235–248CrossRef Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 18:235–248CrossRef
go back to reference Burke AC, Nowicki JL (2003) A new view of patterning domains in the vertebrate mesoderm. Dev Cell 4:159–165PubMedCrossRef Burke AC, Nowicki JL (2003) A new view of patterning domains in the vertebrate mesoderm. Dev Cell 4:159–165PubMedCrossRef
go back to reference Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346PubMed Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346PubMed
go back to reference Burke AC (1989) Development of the turtle carapace: implications for the evolution of a novel bauplan. J Morphol 199:363–378CrossRef Burke AC (1989) Development of the turtle carapace: implications for the evolution of a novel bauplan. J Morphol 199:363–378CrossRef
go back to reference Burke AC (1991) The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627 Burke AC (1991) The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627
go back to reference Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York
go back to reference Carus KG (1834) Lehrbuch der Vergleichenden Zootomie, vol 1, 2nd edn. Fleischer, Leipzig Carus KG (1834) Lehrbuch der Vergleichenden Zootomie, vol 1, 2nd edn. Fleischer, Leipzig
go back to reference Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF (2007) Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9:267–277PubMedCrossRef Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF (2007) Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9:267–277PubMedCrossRef
go back to reference Cebra-Thomas J, Tan F, Sistla S et al (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool 304B:558–569CrossRef Cebra-Thomas J, Tan F, Sistla S et al (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool 304B:558–569CrossRef
go back to reference Christ B, Jacob HJ, Jacob M (1974) Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 30:1446–1449PubMedCrossRef Christ B, Jacob HJ, Jacob M (1974) Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 30:1446–1449PubMedCrossRef
go back to reference Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventrolateral abdominal muscles in the avian embryo: an experimental and ultrastructural study. Anat Embryol 166:87–101PubMedCrossRef Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventrolateral abdominal muscles in the avian embryo: an experimental and ultrastructural study. Anat Embryol 166:87–101PubMedCrossRef
go back to reference Claessens LPAM (2004) Dinosaur gastralia; origin, morphology, and function. J Vertebr Paleontol 24:89–106CrossRef Claessens LPAM (2004) Dinosaur gastralia; origin, morphology, and function. J Vertebr Paleontol 24:89–106CrossRef
go back to reference Clark K, Bender G, Murray BP et al (2001) Evidence for the neural crest origin of turtle plastron bones. Genesis 31:111–117PubMedCrossRef Clark K, Bender G, Murray BP et al (2001) Evidence for the neural crest origin of turtle plastron bones. Genesis 31:111–117PubMedCrossRef
go back to reference Collins CA, Watt FM (2008) Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and notch signalling. Dev Biol 324:55–67PubMedCrossRef Collins CA, Watt FM (2008) Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and notch signalling. Dev Biol 324:55–67PubMedCrossRef
go back to reference Cuvier G (1800) Leçons d’Anatomie Comparée, vol 1. Boudouin, Paris Cuvier G (1800) Leçons d’Anatomie Comparée, vol 1. Boudouin, Paris
go back to reference Danilkovitch-Miagkova A, Miagkov A, Skeel A, Nakaigawa N, Zbar B, Leonard EJ (2001) Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the β-catenin pathway. Mol Cell Biol 21:5857–5868PubMedCrossRef Danilkovitch-Miagkova A, Miagkov A, Skeel A, Nakaigawa N, Zbar B, Leonard EJ (2001) Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the β-catenin pathway. Mol Cell Biol 21:5857–5868PubMedCrossRef
go back to reference Evans DJ, Valasek P, Schmidt C, Patel K (2006) Skeletal muscle translocation in vertebrates. Anat Embryol 211:43–50PubMed Evans DJ, Valasek P, Schmidt C, Patel K (2006) Skeletal muscle translocation in vertebrates. Anat Embryol 211:43–50PubMed
go back to reference Fraidenraich D, Iwahori A, Rudnicki M, Basilico C (2000) Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Dev Biol 225:392–406PubMedCrossRef Fraidenraich D, Iwahori A, Rudnicki M, Basilico C (2000) Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Dev Biol 225:392–406PubMedCrossRef
go back to reference Fraidenraich D, Lang R, Basilico C (1998) Distinct regulatory elements govern Fgf4 gene expression in the mouse blastocyst, myotomes, and developing limb. Dev Biol 204:197–209PubMedCrossRef Fraidenraich D, Lang R, Basilico C (1998) Distinct regulatory elements govern Fgf4 gene expression in the mouse blastocyst, myotomes, and developing limb. Dev Biol 204:197–209PubMedCrossRef
go back to reference Gaffney ES (1990) The comparative osteology of the Triassic turtle Proganochelys. Bull Am Mus Nat Hist 194:1–263 Gaffney ES (1990) The comparative osteology of the Triassic turtle Proganochelys. Bull Am Mus Nat Hist 194:1–263
go back to reference Gegenbaur C (1898) Vergleichende Anatomie der Wirbelthiere. Engelmann, Leipzig Gegenbaur C (1898) Vergleichende Anatomie der Wirbelthiere. Engelmann, Leipzig
go back to reference Geoffroy Saint-Hilaire E (1818) Philosophie Anatomique, vol 1. Baillière, Paris Geoffroy Saint-Hilaire E (1818) Philosophie Anatomique, vol 1. Baillière, Paris
go back to reference Gilbert SC (2010) Developmental biology, 9th edn. Sinauer, Sunderland Gilbert SC (2010) Developmental biology, 9th edn. Sinauer, Sunderland
go back to reference Gilbert SF, Loredo GA, Brukman A, Burke AC (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58PubMedCrossRef Gilbert SF, Loredo GA, Brukman A, Burke AC (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58PubMedCrossRef
go back to reference Gilbert SF, Bender G, Betters E, Yin M, Cebra-Thomas JA (2007) The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integr Comp Biol 47:401–408PubMedCrossRef Gilbert SF, Bender G, Betters E, Yin M, Cebra-Thomas JA (2007) The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integr Comp Biol 47:401–408PubMedCrossRef
go back to reference Gilbert SF, Cebra-Thomas JA, Burke AC (2008) How the turtle gets its shell. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC, Boca Raton, pp 1–16 Gilbert SF, Cebra-Thomas JA, Burke AC (2008) How the turtle gets its shell. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC, Boca Raton, pp 1–16
go back to reference Goette A (1899) Über die Entwicklung des knöchernen Ruckenschildes (Carapax) der Schildkröten. Z Wiss Zool 66:407–434 Goette A (1899) Über die Entwicklung des knöchernen Ruckenschildes (Carapax) der Schildkröten. Z Wiss Zool 66:407–434
go back to reference Goodrich ES (1930) Studies on the structure and development of vertebrates. McMillan, London Goodrich ES (1930) Studies on the structure and development of vertebrates. McMillan, London
go back to reference Grass S, Arnold HH, Braun T (1996) Alterations in somite patterning of Myf-5-deficient mice: a possible role for FGF-4 and FGF-6. Development 122:141–150PubMed Grass S, Arnold HH, Braun T (1996) Alterations in somite patterning of Myf-5-deficient mice: a possible role for FGF-4 and FGF-6. Development 122:141–150PubMed
go back to reference Haeckel E (1895) Systematische Phylogenie. Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. Reimer, Berlin Haeckel E (1895) Systematische Phylogenie. Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. Reimer, Berlin
go back to reference Hall BK (1998) Evolutionary developmental biology, 2nd edn. Chapman & Hall, LondonCrossRef Hall BK (1998) Evolutionary developmental biology, 2nd edn. Chapman & Hall, LondonCrossRef
go back to reference Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–91CrossRef Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–91CrossRef
go back to reference Huang R, Zhi Q, Neubüser A et al (1996) Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anat 155:231–241PubMedCrossRef Huang R, Zhi Q, Neubüser A et al (1996) Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anat 155:231–241PubMedCrossRef
go back to reference Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B (2000a) Sclerotomal origin of the ribs. Development 127:527–532PubMed Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B (2000a) Sclerotomal origin of the ribs. Development 127:527–532PubMed
go back to reference Huang R, Zhi Q, Scmhidt C, Brand-Saberi B, Christ B (2000b) New experimental evidence for somite resegmentation. Anat Embryol 202:195–200PubMedCrossRef Huang R, Zhi Q, Scmhidt C, Brand-Saberi B, Christ B (2000b) New experimental evidence for somite resegmentation. Anat Embryol 202:195–200PubMedCrossRef
go back to reference Huang R, Zhi Q, Wilting J, Christ B (1994) The fate of the somitocoele cells in avian embryos. Anat Embryol 190:243–250PubMedCrossRef Huang R, Zhi Q, Wilting J, Christ B (1994) The fate of the somitocoele cells in avian embryos. Anat Embryol 190:243–250PubMedCrossRef
go back to reference Joyce WG, Lucas SG, Scheyer TM, Heckert AB, Hunt AP (2009) A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell. Proc R Soc Lond B276:507–513CrossRef Joyce WG, Lucas SG, Scheyer TM, Heckert AB, Hunt AP (2009) A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell. Proc R Soc Lond B276:507–513CrossRef
go back to reference Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124:4729–4738PubMed Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124:4729–4738PubMed
go back to reference Kato N, Aoyama H (1998) Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development 125:3437–3443PubMed Kato N, Aoyama H (1998) Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development 125:3437–3443PubMed
go back to reference Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda U, Kuratani S (2011) Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 13:260–268PubMedCrossRef Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda U, Kuratani S (2011) Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 13:260–268PubMedCrossRef
go back to reference Kuraku S, Usuda R, Kuratani S (2005) Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 7:3–17PubMedCrossRef Kuraku S, Usuda R, Kuratani S (2005) Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 7:3–17PubMedCrossRef
go back to reference Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of the turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13:1–14PubMedCrossRef Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of the turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13:1–14PubMedCrossRef
go back to reference Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234:824–834PubMedCrossRef Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234:824–834PubMedCrossRef
go back to reference Kusakabe R, Kuratani S (2007) Evolutionary perspectives from development of mesodermal components in the lamprey. Dev Dyn 236:410–420CrossRef Kusakabe R, Kuratani S (2007) Evolutionary perspectives from development of mesodermal components in the lamprey. Dev Dyn 236:410–420CrossRef
go back to reference Lee MSY (1993) The origin of the turtle body plan: bridging a famous morphological gap. Science 261:1716–1720PubMedCrossRef Lee MSY (1993) The origin of the turtle body plan: bridging a famous morphological gap. Science 261:1716–1720PubMedCrossRef
go back to reference Lee MSY (1996) Correlated progression and the origin of turtles. Nature 379:812–815CrossRef Lee MSY (1996) Correlated progression and the origin of turtles. Nature 379:812–815CrossRef
go back to reference Li C, Wu X, Rieppel O, Wang L, Zhao L (2008) An ancestral turtle from the Late Triassic of southwestern China. Nature 45:497–501CrossRef Li C, Wu X, Rieppel O, Wang L, Zhao L (2008) An ancestral turtle from the Late Triassic of southwestern China. Nature 45:497–501CrossRef
go back to reference Loredo GA, Brukman A, Harris MP et al (2001) Development of an evolutionarily novel structure: fibroblast growth factor expression in the carapacial ridge of turtle embryos. J Exp Zool 291B:274–281CrossRef Loredo GA, Brukman A, Harris MP et al (2001) Development of an evolutionarily novel structure: fibroblast growth factor expression in the carapacial ridge of turtle embryos. J Exp Zool 291B:274–281CrossRef
go back to reference Monga SP, Mars WM, Pediaditakis P et al (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071PubMed Monga SP, Mars WM, Pediaditakis P et al (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071PubMed
go back to reference Moustakas JE (2008) Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol Dev 10:29–36PubMedCrossRef Moustakas JE (2008) Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol Dev 10:29–36PubMedCrossRef
go back to reference Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function, and the chelonian body plan. Development 134:2219–2226PubMedCrossRef Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function, and the chelonian body plan. Development 134:2219–2226PubMedCrossRef
go back to reference Nagashima H, Sugahara F, Takechi M et al (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325:193–196PubMedCrossRef Nagashima H, Sugahara F, Takechi M et al (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325:193–196PubMedCrossRef
go back to reference Nagashima H, Uchida K, Yamamoto K, Kuraku S, Usuda R, Kuratani S (2005) Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Dev Dyn 232:149–161PubMedCrossRef Nagashima H, Uchida K, Yamamoto K, Kuraku S, Usuda R, Kuratani S (2005) Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Dev Dyn 232:149–161PubMedCrossRef
go back to reference Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (in press) Origin of the turtle body plan—the folding theory to illustrate turtle-specific developmental repatterning. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (in press) Origin of the turtle body plan—the folding theory to illustrate turtle-specific developmental repatterning. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht
go back to reference Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303:1483–1487PubMedCrossRef Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303:1483–1487PubMedCrossRef
go back to reference Nowicki JL, Burke AC (2000) Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development 127:4265–4275PubMed Nowicki JL, Burke AC (2000) Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development 127:4265–4275PubMed
go back to reference Nowicki JL, Takimoto R, Burke AC (2003) The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev 120:227–240PubMedCrossRef Nowicki JL, Takimoto R, Burke AC (2003) The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev 120:227–240PubMedCrossRef
go back to reference Ogushi K (1911) Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japonicus). Morphol Jahrb 43:1–106 Ogushi K (1911) Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japonicus). Morphol Jahrb 43:1–106
go back to reference Ohya YK, Kuraku S, Kuratani S (2005) Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J Exp Zool 304B:107–118CrossRef Ohya YK, Kuraku S, Kuratani S (2005) Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J Exp Zool 304B:107–118CrossRef
go back to reference Ohya YK, Usuda R, Kuraku S, Nagashima H, Kuratani S (2006) Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing and unusual expression pattern. Evol Dev 8:415–423PubMedCrossRef Ohya YK, Usuda R, Kuraku S, Nagashima H, Kuratani S (2006) Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing and unusual expression pattern. Evol Dev 8:415–423PubMedCrossRef
go back to reference Olivera-Martinez I, Coltey M, Dhouailly D, Pourqui O (2000) Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 127:4611–4617PubMed Olivera-Martinez I, Coltey M, Dhouailly D, Pourqui O (2000) Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 127:4611–4617PubMed
go back to reference Olson EN, Arnold HH, Rigby PWJ, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85:1–4PubMedCrossRef Olson EN, Arnold HH, Rigby PWJ, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85:1–4PubMedCrossRef
go back to reference Owen FRS (1849) On the development and homologies of the carapace and plastron of the chelonian reptiles. Philos Trans R Soc Lond 139:151–171 Owen FRS (1849) On the development and homologies of the carapace and plastron of the chelonian reptiles. Philos Trans R Soc Lond 139:151–171
go back to reference Parker WK (1868) A monograph on the structure and development of the shoulder-girdle and sternum in the Vertebrata. Hardwicke, London Parker WK (1868) A monograph on the structure and development of the shoulder-girdle and sternum in the Vertebrata. Hardwicke, London
go back to reference Patapoutian A, Yoon JK, Miner JH, Wang S, Stark K, Wold B (1995) Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121:3347–3358PubMed Patapoutian A, Yoon JK, Miner JH, Wang S, Stark K, Wold B (1995) Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121:3347–3358PubMed
go back to reference Pinot M (1969) Etude expérimentale de la morphogenése de la cage thoracique chez l’embryon de poulet: mécanismes et origine du matériel. J Embryol Exp Morph 21:149–164PubMed Pinot M (1969) Etude expérimentale de la morphogenése de la cage thoracique chez l’embryon de poulet: mécanismes et origine du matériel. J Embryol Exp Morph 21:149–164PubMed
go back to reference Rasola A, Fassetta M, De Bacco F et al (2007) A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene 26:1078–1087PubMedCrossRef Rasola A, Fassetta M, De Bacco F et al (2007) A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene 26:1078–1087PubMedCrossRef
go back to reference Rathke H (1848) Ueber die Entwickelung der Schildkröten. Vieweg, BraunschweigCrossRef Rathke H (1848) Ueber die Entwickelung der Schildkröten. Vieweg, BraunschweigCrossRef
go back to reference Rieppel O (in press) The evolution of the turtle shell. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht Rieppel O (in press) The evolution of the turtle shell. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht
go back to reference Romer AS (1956) Osteology of the reptiles. University of Chicago Press, Chicago Romer AS (1956) Osteology of the reptiles. University of Chicago Press, Chicago
go back to reference Romer AS, Parsons TS (1977) The vertebrate body. Saunders, Philadelphia Romer AS, Parsons TS (1977) The vertebrate body. Saunders, Philadelphia
go back to reference Ruckes H (1929) Studies in chelonian osteology part II, the morphological relationships between the girdles, ribs and carapace. Ann NY Acad Sci 31:81–120CrossRef Ruckes H (1929) Studies in chelonian osteology part II, the morphological relationships between the girdles, ribs and carapace. Ann NY Acad Sci 31:81–120CrossRef
go back to reference Saunders JW Jr (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108:363–403PubMedCrossRef Saunders JW Jr (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108:363–403PubMedCrossRef
go back to reference Saunders JW Jr, Reuss C (1974) Inductive and axial properties of prospective wing-bud mesoderm in the chick embryo. Dev Biol 38:41–50PubMedCrossRef Saunders JW Jr, Reuss C (1974) Inductive and axial properties of prospective wing-bud mesoderm in the chick embryo. Dev Biol 38:41–50PubMedCrossRef
go back to reference Scheyer TM, Brüllmann B, Sánchez-Villagra MR (2008) The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones. J Morphol 269:1008–1021PubMedCrossRef Scheyer TM, Brüllmann B, Sánchez-Villagra MR (2008) The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones. J Morphol 269:1008–1021PubMedCrossRef
go back to reference Seno T (1961) An experimental study on the formation of the body wall in the chick. Acta Anat 45:60–82PubMedCrossRef Seno T (1961) An experimental study on the formation of the body wall in the chick. Acta Anat 45:60–82PubMedCrossRef
go back to reference Sensenig EC (1949) The early development of the human vertebral column. Contrib Embryol 33:23–40 Sensenig EC (1949) The early development of the human vertebral column. Contrib Embryol 33:23–40
go back to reference Shearman RM, Burke AC (2009) The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool 312B:603–612CrossRef Shearman RM, Burke AC (2009) The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool 312B:603–612CrossRef
go back to reference Shimomura Y, Agalliu D, Vonica A et al (2010) APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464:1043–1047PubMedCrossRef Shimomura Y, Agalliu D, Vonica A et al (2010) APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464:1043–1047PubMedCrossRef
go back to reference Sudo H, Takahashi Y, Tonegawa A et al (2001) Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Dev Biol 232:284–300PubMedCrossRef Sudo H, Takahashi Y, Tonegawa A et al (2001) Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Dev Biol 232:284–300PubMedCrossRef
go back to reference Summerbell D, Lewis JH, Wolpert L (1973) Positional information in chick limb morphogenesis. Nature 224:492–496CrossRef Summerbell D, Lewis JH, Wolpert L (1973) Positional information in chick limb morphogenesis. Nature 224:492–496CrossRef
go back to reference Sweeney RM, Watterson RL (1969) Rib development in chick embryos analyzed by means of tantalum foil blocks. Am J Anat 126:127–150PubMedCrossRef Sweeney RM, Watterson RL (1969) Rib development in chick embryos analyzed by means of tantalum foil blocks. Am J Anat 126:127–150PubMedCrossRef
go back to reference Tabin C, Wolpert L (2007) Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Gen Dev 21:1433–1442CrossRef Tabin C, Wolpert L (2007) Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Gen Dev 21:1433–1442CrossRef
go back to reference Takahashi M, Fujita M, Furukawa Y et al (2002) Isolation of a novel human gene, APCDD1, as a direct target of the β-catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Res 62:5651–5656PubMed Takahashi M, Fujita M, Furukawa Y et al (2002) Isolation of a novel human gene, APCDD1, as a direct target of the β-catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Res 62:5651–5656PubMed
go back to reference Takahashi M, Nakamura Y, Obama K, Furukawa Y (2005) Identification of SP5 as a downstream gene of the β-catenin/Tcf pathway and its enhanced expression in human colon cancer. Int J Oncol 27:1483–1487PubMed Takahashi M, Nakamura Y, Obama K, Furukawa Y (2005) Identification of SP5 as a downstream gene of the β-catenin/Tcf pathway and its enhanced expression in human colon cancer. Int J Oncol 27:1483–1487PubMed
go back to reference Theißen G (2006) The proper place of hopeful monsters in evolutionary biology. Theory Biosci 124:349–369PubMedCrossRef Theißen G (2006) The proper place of hopeful monsters in evolutionary biology. Theory Biosci 124:349–369PubMedCrossRef
go back to reference Theißen G (2009) Saltational evolution: hopeful monsters are here to stay. Theory Biosci 128:43–51PubMedCrossRef Theißen G (2009) Saltational evolution: hopeful monsters are here to stay. Theory Biosci 128:43–51PubMedCrossRef
go back to reference Valasek P, Theis S, Krejci E, Grim M, Maina F, Shwartz Y et al (2010) Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. J Anat 216:482–488PubMedCrossRef Valasek P, Theis S, Krejci E, Grim M, Maina F, Shwartz Y et al (2010) Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. J Anat 216:482–488PubMedCrossRef
go back to reference Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM et al (2011) Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 357:108–116PubMedCrossRef Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM et al (2011) Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 357:108–116PubMedCrossRef
go back to reference Vallén E (1942) Beiträge zur Kenntnis der Ontogenie und der vergleichenden Anatomie des Schildkrötenpanzers. Acta Zool 23:1–127CrossRef Vallén E (1942) Beiträge zur Kenntnis der Ontogenie und der vergleichenden Anatomie des Schildkrötenpanzers. Acta Zool 23:1–127CrossRef
go back to reference Vasyutina E, Birchmeier C (2006) The development of migrating muscle precursor cells. Anat Embryol 211:S37–S41 Vasyutina E, Birchmeier C (2006) The development of migrating muscle precursor cells. Anat Embryol 211:S37–S41
go back to reference Vinagre T, Moncaut N, Carapuço M, Nóvoa A, Bom J, Mallo M (2010) Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell 18:655–661PubMedCrossRef Vinagre T, Moncaut N, Carapuço M, Nóvoa A, Bom J, Mallo M (2010) Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell 18:655–661PubMedCrossRef
go back to reference Vincent C, Bontoux M, Le Douarin NM, Pieau C, Monsoro-Burq AH (2003) Msx genes are expressed in the carapacial ridge of turtle shell: a study of the European pond turtle, Emys orbicularis. Dev Genes Evol 213:464–469PubMedCrossRef Vincent C, Bontoux M, Le Douarin NM, Pieau C, Monsoro-Burq AH (2003) Msx genes are expressed in the carapacial ridge of turtle shell: a study of the European pond turtle, Emys orbicularis. Dev Genes Evol 213:464–469PubMedCrossRef
go back to reference Walker WF Jr (1947) The development of the shoulder region of the turtle, Chrysemys picta marginata, with special reference to the primary musculature. J Morphol 80:195–249PubMedCrossRef Walker WF Jr (1947) The development of the shoulder region of the turtle, Chrysemys picta marginata, with special reference to the primary musculature. J Morphol 80:195–249PubMedCrossRef
go back to reference Wang B, He L, Ehehalt F et al (2005) The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 287:11–18PubMedCrossRef Wang B, He L, Ehehalt F et al (2005) The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 287:11–18PubMedCrossRef
go back to reference Watson DSM (1914) Eunotosaurus africanus Seeley and the ancestors of the Chelonia. Proc Zool Soc Lond 11:1011–1020 Watson DSM (1914) Eunotosaurus africanus Seeley and the ancestors of the Chelonia. Proc Zool Soc Lond 11:1011–1020
go back to reference Weidinger G, Thorpe CJ, Wuennenberg-Stapleton K, Ngai J, Moon RT (2005) The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/β-catenin signaling in mesoderm and neuroectoderm patterning. Curr Biol 15:489–500PubMedCrossRef Weidinger G, Thorpe CJ, Wuennenberg-Stapleton K, Ngai J, Moon RT (2005) The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/β-catenin signaling in mesoderm and neuroectoderm patterning. Curr Biol 15:489–500PubMedCrossRef
go back to reference Winter B, Braun T, Arnold HH (1992) Co-operativity of functional domains in the muscle-specific transcription factor Myf-5. EMBO J 11:1843–1855PubMed Winter B, Braun T, Arnold HH (1992) Co-operativity of functional domains in the muscle-specific transcription factor Myf-5. EMBO J 11:1843–1855PubMed
go back to reference Yntema CL (1970) Extirpation experiments on the embryonic rudiments of the carapace of Chelydra serpentina. J Morphol 132:235–244PubMedCrossRef Yntema CL (1970) Extirpation experiments on the embryonic rudiments of the carapace of Chelydra serpentina. J Morphol 132:235–244PubMedCrossRef
go back to reference Yoon JK, Olson EN, Arnold HH, Wold BJ (1997) Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus. Dev Biol 188:349–362PubMedCrossRef Yoon JK, Olson EN, Arnold HH, Wold BJ (1997) Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus. Dev Biol 188:349–362PubMedCrossRef
go back to reference Zangerl R (1939) The homology of the shell elements in turtles. J Morphol 65:383–409CrossRef Zangerl R (1939) The homology of the shell elements in turtles. J Morphol 65:383–409CrossRef
go back to reference Zangerl R (1969) The turtle shell. In: Gans C, Bellairs Ad’A, Parsons TS (eds) The biology of the reptilia, vol 1. Academic Press, New York, pp 311–319 Zangerl R (1969) The turtle shell. In: Gans C, Bellairs Ad’A, Parsons TS (eds) The biology of the reptilia, vol 1. Academic Press, New York, pp 311–319
go back to reference Zhang W, Behringer RR, Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9:1388–1399PubMedCrossRef Zhang W, Behringer RR, Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9:1388–1399PubMedCrossRef
Metadata
Title
Body plan of turtles: an anatomical, developmental and evolutionary perspective
Authors
Hiroshi Nagashima
Shigehiro Kuraku
Katsuhisa Uchida
Yoshie Kawashima-Ohya
Yuichi Narita
Shigeru Kuratani
Publication date
01-03-2012
Publisher
Springer Japan
Published in
Anatomical Science International / Issue 1/2012
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-011-0121-y

Other articles of this Issue 1/2012

Anatomical Science International 1/2012 Go to the issue