Skip to main content
Top
Published in: Pediatric Radiology 6/2016

01-05-2016 | Pediatric Body MRI

Body MR angiography in children: how we do it

Authors: Rajesh Krishnamurthy, LaDonna Malone, Karen Lyons, Pamela Ketwaroo, Nicholas Dodd, Daniel Ashton

Published in: Pediatric Radiology | Issue 6/2016

Login to get access

Abstract

Vascular pathology is ubiquitous in children. Common indications for angiographic imaging in the body include congenital anomalies, portal hypertension, assessing resectability of neoplasms, renovascular hypertension, vascular malformations, vasculitis, systemic vein thrombosis, and trauma. MR angiography, with or without the use of intravenous contrast agents, is therefore a mainstay in the repertoire of MR imaging in children. Pediatric contrast-enhanced MR angiography has benefited from several innovations in recent years, including improved hardware options like high-field-strength scanners and integrated high-density coil arrays, new sequences that combine parallel imaging, innovative k-space sampling and Dixon fat suppression with time-resolved imaging, new contrast agents with longer blood-pool residence time, and advanced post-processing solutions like image fusion. This article focuses on the principles of contrast-enhanced MR angiography of the body as it pertains to the physiologies and pathologies encountered in children. It also discusses tools to adapt the MR angiographic technique to the clinical indication, as well as pitfalls of post-processing and interpretation in commonly encountered vascular imaging scenarios in the pediatric body.
Literature
1.
go back to reference Wheaton AJ, Miyazaki M (2012) Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 36:286–304CrossRefPubMed Wheaton AJ, Miyazaki M (2012) Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 36:286–304CrossRefPubMed
2.
go back to reference Pasqua AD, Barcudi S, Leonardi B et al (2011) Comparison of contrast and noncontrast magnetic resonance angiography for quantitative analysis of thoracic arteries in young patients with congenital heart defects. Ann Pediatr Cardiol 4:36–40CrossRefPubMedPubMedCentral Pasqua AD, Barcudi S, Leonardi B et al (2011) Comparison of contrast and noncontrast magnetic resonance angiography for quantitative analysis of thoracic arteries in young patients with congenital heart defects. Ann Pediatr Cardiol 4:36–40CrossRefPubMedPubMedCentral
3.
go back to reference Malayeri AA, Brooks KM, Bryant LH et al (2016) National Institutes of Health perspective on reports of gadolinium deposition in the brain. J Am Coll Radiol 13:237–241 Malayeri AA, Brooks KM, Bryant LH et al (2016) National Institutes of Health perspective on reports of gadolinium deposition in the brain. J Am Coll Radiol 13:237–241
4.
go back to reference Krishnamurthy R, Muthupillai R, Chung T (2009) Pediatric body MR angiography. Magn Reson Imaging Clin N Am 17:133–144CrossRefPubMed Krishnamurthy R, Muthupillai R, Chung T (2009) Pediatric body MR angiography. Magn Reson Imaging Clin N Am 17:133–144CrossRefPubMed
5.
go back to reference Chung T, Krishnamurthy R (2005) Contrast-enhanced MR angiography in infants and children. Magn Reson Imaging Clin N Am 13:161–170CrossRefPubMed Chung T, Krishnamurthy R (2005) Contrast-enhanced MR angiography in infants and children. Magn Reson Imaging Clin N Am 13:161–170CrossRefPubMed
6.
go back to reference Krishnamurthy R, Slesnick T, Browne L et al (2010) Free breathing high temporal resolution time resolved contrast enhanced MRA (4-D MRA) at high heart rates using keyhole SENSE CENTRA in congenital heart disease. J Cardiovasc Magn Reson 12:O31CrossRef Krishnamurthy R, Slesnick T, Browne L et al (2010) Free breathing high temporal resolution time resolved contrast enhanced MRA (4-D MRA) at high heart rates using keyhole SENSE CENTRA in congenital heart disease. J Cardiovasc Magn Reson 12:O31CrossRef
7.
go back to reference Rosenkrantz AB, Mannelli L, Kim S et al (2011) Gadolinium-enhanced liver magnetic resonance imaging using a 2-point Dixon fat-water separation technique: impact upon image quality and lesion detection. J Comput Assist Tomogr 35:96–101CrossRefPubMed Rosenkrantz AB, Mannelli L, Kim S et al (2011) Gadolinium-enhanced liver magnetic resonance imaging using a 2-point Dixon fat-water separation technique: impact upon image quality and lesion detection. J Comput Assist Tomogr 35:96–101CrossRefPubMed
8.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
9.
go back to reference Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefPubMed Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603CrossRefPubMed
10.
go back to reference van Vaals JJ, Brummer ME, Dixon WT et al (1993) ‘Keyhole’ method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675CrossRefPubMed van Vaals JJ, Brummer ME, Dixon WT et al (1993) ‘Keyhole’ method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675CrossRefPubMed
11.
go back to reference Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351CrossRefPubMed Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351CrossRefPubMed
12.
go back to reference Herrmann KH, Baltzer PA, Dietzel M et al (2011) Resolving arterial phase and temporal enhancement characteristics in DCE MRM at high spatial resolution with TWIST acquisition. J Magn Reson Imaging 34:973–982CrossRefPubMed Herrmann KH, Baltzer PA, Dietzel M et al (2011) Resolving arterial phase and temporal enhancement characteristics in DCE MRM at high spatial resolution with TWIST acquisition. J Magn Reson Imaging 34:973–982CrossRefPubMed
13.
go back to reference Krishnamurthy R, Bahouth S, Muthupillai R (2016) 4D contrast-enhanced MR angiography with keyhole technique in children: technique and clinical applications. Radiographics 36:523–537CrossRefPubMed Krishnamurthy R, Bahouth S, Muthupillai R (2016) 4D contrast-enhanced MR angiography with keyhole technique in children: technique and clinical applications. Radiographics 36:523–537CrossRefPubMed
14.
go back to reference Shi K, Zhou K, Niu X et al (2011) Investigation of motion artifacts associated with fat saturation technique in 3D flash imaging. Med Phys 38:4556–4562CrossRefPubMed Shi K, Zhou K, Niu X et al (2011) Investigation of motion artifacts associated with fat saturation technique in 3D flash imaging. Med Phys 38:4556–4562CrossRefPubMed
15.
go back to reference Low RN, Bayram E, Panchal NJ et al (2010) High-resolution double arterial phase hepatic MRI using adaptive 2D centric view ordering: initial clinical experience. AJR Am J Roentgenol 194:947–956CrossRefPubMed Low RN, Bayram E, Panchal NJ et al (2010) High-resolution double arterial phase hepatic MRI using adaptive 2D centric view ordering: initial clinical experience. AJR Am J Roentgenol 194:947–956CrossRefPubMed
16.
go back to reference Chandarana H, Block KT, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 46:648–653CrossRefPubMed Chandarana H, Block KT, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 46:648–653CrossRefPubMed
17.
go back to reference Saranathan M, Rettmann DW, Hargreaves BA et al (2012) DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. Magn Reson Imaging 35:1484–1492CrossRef Saranathan M, Rettmann DW, Hargreaves BA et al (2012) DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. Magn Reson Imaging 35:1484–1492CrossRef
19.
go back to reference Jimbo K, Suzuki M, Fujii T et al (2015) Usefulness of magnetic resonance angiography for the evaluation of varices at hepaticojejunostomy after liver transplantation. Acta Radiol Open 4:2058460115578600PubMedPubMedCentral Jimbo K, Suzuki M, Fujii T et al (2015) Usefulness of magnetic resonance angiography for the evaluation of varices at hepaticojejunostomy after liver transplantation. Acta Radiol Open 4:2058460115578600PubMedPubMedCentral
20.
go back to reference Wang L, Lu JP, Want F et al (2011) Diagnosis of Budd-Chiari syndrome: three-dimensional dynamic contrast enhanced magnetic resonance angiography. Abdom Imaging 36:399–406CrossRefPubMed Wang L, Lu JP, Want F et al (2011) Diagnosis of Budd-Chiari syndrome: three-dimensional dynamic contrast enhanced magnetic resonance angiography. Abdom Imaging 36:399–406CrossRefPubMed
21.
go back to reference Mu X, Wang H, Ma Q et al (2014) Contrast-enhanced magnetic resonance angiography for the preoperative evaluation of hepatic vascular anatomy in living liver donors: a meta-analysis. Acad Radiol 21:743–749CrossRefPubMed Mu X, Wang H, Ma Q et al (2014) Contrast-enhanced magnetic resonance angiography for the preoperative evaluation of hepatic vascular anatomy in living liver donors: a meta-analysis. Acad Radiol 21:743–749CrossRefPubMed
22.
go back to reference Czauderna P, Haeberle B, Hiyama E et al (2016) The Children’s Hepatic tumors International Collaboration (CHIC): novel global rare tumor database yields new prognostic factors in hepatoblastoma and becomes a research model. Eur J Cancer 52:92–101CrossRefPubMed Czauderna P, Haeberle B, Hiyama E et al (2016) The Children’s Hepatic tumors International Collaboration (CHIC): novel global rare tumor database yields new prognostic factors in hepatoblastoma and becomes a research model. Eur J Cancer 52:92–101CrossRefPubMed
23.
go back to reference Baldari D, Capece S, Mainenti PP et al (2015) Comparison between computed tomography multislice and high-field magnetic resonance in the diagnostic evaluation of patients with renal masses. Quant Imaging Med Surg 5:691–699PubMedPubMedCentral Baldari D, Capece S, Mainenti PP et al (2015) Comparison between computed tomography multislice and high-field magnetic resonance in the diagnostic evaluation of patients with renal masses. Quant Imaging Med Surg 5:691–699PubMedPubMedCentral
24.
go back to reference Scardapane A, Stabile Ianora A, Sabbà C et al (2012) Dynamic 4D MR angiography versus multislice CT angiography in the evaluation of vascular hepatic involvement in hereditary hemorrhagic telangiectasia. Radiol Med 117:29–45CrossRefPubMed Scardapane A, Stabile Ianora A, Sabbà C et al (2012) Dynamic 4D MR angiography versus multislice CT angiography in the evaluation of vascular hepatic involvement in hereditary hemorrhagic telangiectasia. Radiol Med 117:29–45CrossRefPubMed
25.
go back to reference Elsayes KM, Narra VR, Mukundan G et al (2005) MR imaging of the spleen: spectrum of abnormalities. Radiographics 25:967–982CrossRefPubMed Elsayes KM, Narra VR, Mukundan G et al (2005) MR imaging of the spleen: spectrum of abnormalities. Radiographics 25:967–982CrossRefPubMed
26.
go back to reference Lee JK, Kim AY, Kim PN et al (2010) Prediction of vascular involvement and resectability by multidetector-row CT versus MR imaging with MR angiography in patients who underwent surgery for resection of pancreatic ductal adenocarcinoma. Eur J Radiol 73:310–316CrossRefPubMed Lee JK, Kim AY, Kim PN et al (2010) Prediction of vascular involvement and resectability by multidetector-row CT versus MR imaging with MR angiography in patients who underwent surgery for resection of pancreatic ductal adenocarcinoma. Eur J Radiol 73:310–316CrossRefPubMed
27.
go back to reference Dobos N, Roberts DA, Insko EK et al (2005) Contrast-enhanced MR angiography for evaluation of vascular complications of the pancreatic transplant. Radiographics 25:687–695CrossRefPubMed Dobos N, Roberts DA, Insko EK et al (2005) Contrast-enhanced MR angiography for evaluation of vascular complications of the pancreatic transplant. Radiographics 25:687–695CrossRefPubMed
28.
go back to reference Tullus K, Brennan E, Hamilton G et al (2008) Renovascular hypertension in children. Lancet 371:1453–1463CrossRefPubMed Tullus K, Brennan E, Hamilton G et al (2008) Renovascular hypertension in children. Lancet 371:1453–1463CrossRefPubMed
29.
go back to reference Higgins L, Koshy J, Mitchell S et al (2016) Time-resolved contrast-enhanced MR angiography (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systemic evaluation of MRI and TWIST in a cohort of 47 children. Clin Radiol 71:32–39CrossRefPubMed Higgins L, Koshy J, Mitchell S et al (2016) Time-resolved contrast-enhanced MR angiography (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systemic evaluation of MRI and TWIST in a cohort of 47 children. Clin Radiol 71:32–39CrossRefPubMed
30.
go back to reference Soliman M, Laxer R, Manson D et al (2015) Imaging of systemic vasculitis in childhood. Pediatr Radiol 45:1110–1125CrossRefPubMed Soliman M, Laxer R, Manson D et al (2015) Imaging of systemic vasculitis in childhood. Pediatr Radiol 45:1110–1125CrossRefPubMed
31.
go back to reference Yamada I, Nakagawa T, Himeno Y et al (2000) Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging 11:481–487CrossRefPubMed Yamada I, Nakagawa T, Himeno Y et al (2000) Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging 11:481–487CrossRefPubMed
32.
go back to reference Saracco P, Bagna R, Gentilomo C et al (2016) Clinical data of neonatal systemic thrombosis. J Pediatr 171:60–66.e1 Saracco P, Bagna R, Gentilomo C et al (2016) Clinical data of neonatal systemic thrombosis. J Pediatr 171:60–66.e1
33.
go back to reference Krishnamurthy R, Guillerman R (2008) Pediatric abdominal magnetic resonance angiography. Semin Roentgenol 43:60–71CrossRefPubMed Krishnamurthy R, Guillerman R (2008) Pediatric abdominal magnetic resonance angiography. Semin Roentgenol 43:60–71CrossRefPubMed
Metadata
Title
Body MR angiography in children: how we do it
Authors
Rajesh Krishnamurthy
LaDonna Malone
Karen Lyons
Pamela Ketwaroo
Nicholas Dodd
Daniel Ashton
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 6/2016
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3614-y

Other articles of this Issue 6/2016

Pediatric Radiology 6/2016 Go to the issue