Skip to main content
Top
Published in: Diabetologia 3/2016

01-03-2016 | Article

BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice

Authors: Jin Woo Choi, Anna Jo, Min Kim, Ho Seon Park, Sung Soo Chung, Shinae Kang, Kyong Soo Park

Published in: Diabetologia | Issue 3/2016

Login to get access

Abstract

Aims/hypothesis

Adipose tissue is a highly versatile system in which mitochondria in adipocytes undergo significant changes during active tissue remodelling. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a mitochondrial protein and a known mitochondrial quality regulator. In this study, we investigated the role of BNIP3 in adipocytes, specifically under conditions of peroxisome proliferator-activated receptor-γ (PPARγ)-induced adipose tissue remodelling.

Methods

The expression of BNIP3 was evaluated in 3T3-L1 adipocytes in vitro, C57BL/6 mice fed a high-fat diet and db/db mice in vivo. Mitochondrial bioenergetics was investigated in BNIP3-knockdown adipocytes after rosiglitazone treatment. A putative peroxisome proliferator hormone responsive element (PPRE) was characterised by promoter assay and electrophoretic mobility shift assay (EMSA).

Results

The protein BNIP3 was more abundant in brown adipose tissue than white adipose tissue. Furthermore, BNIP3 expression was upregulated by 3T3-L1 pre-adipocyte differentiation, starvation and rosiglitazone treatment. Conversely, BNIP3 expression in adipocytes decreased under various conditions associated with insulin resistance. This downregulation of BNIP3 was restored by rosiglitazone treatment. Knockdown of BNIP3 in adipocytes inhibited rosiglitazone-induced mitochondrial biogenesis and function, partially mediated by the 5′ AMP-activated protein kinase (AMPK)–peroxisome proliferator-activated receptor γ, co-activator 1 α (PGC1α) signalling pathway. Rosiglitazone treatment increased the transcription level of Bnip3 in the reporter assay and the presence of the PPRE site in the Bnip3 promoter was demonstrated by EMSA.

Conclusions/interpretation

The protein BNIP3 contributes to the improvement of mitochondrial bioenergetics that occurs on exposure to rosiglitazone. It may be a novel therapeutic target for restoring mitochondrial dysfunction under insulin-resistant conditions.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289PubMedCentralCrossRefPubMed Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289PubMedCentralCrossRefPubMed
3.
go back to reference Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252CrossRefPubMed Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252CrossRefPubMed
4.
go back to reference Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med 25:365–451CrossRef Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med 25:365–451CrossRef
5.
go back to reference Dahlman I, Forsgren M, Sjogren A et al (2006) Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-alpha. Diabetes 55:1792–1799CrossRefPubMed Dahlman I, Forsgren M, Sjogren A et al (2006) Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-alpha. Diabetes 55:1792–1799CrossRefPubMed
6.
go back to reference Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473CrossRefPubMed Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473CrossRefPubMed
7.
go back to reference Rong JX, Qiu Y, Hansen MK et al (2007) Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751–1760CrossRefPubMed Rong JX, Qiu Y, Hansen MK et al (2007) Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751–1760CrossRefPubMed
8.
go back to reference Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800PubMed Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800PubMed
9.
go back to reference Spiegelman BM (1998) PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514CrossRefPubMed Spiegelman BM (1998) PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514CrossRefPubMed
10.
go back to reference Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094PubMedCentralCrossRefPubMed Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094PubMedCentralCrossRefPubMed
11.
go back to reference Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399CrossRefPubMed Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399CrossRefPubMed
12.
go back to reference Feinstein DL, Spagnolo A, Akar C et al (2005) Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 70:177–188CrossRefPubMed Feinstein DL, Spagnolo A, Akar C et al (2005) Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 70:177–188CrossRefPubMed
13.
go back to reference Vande Velde C, Cizeau J, Dubik D et al (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468PubMedCentralCrossRefPubMed Vande Velde C, Cizeau J, Dubik D et al (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468PubMedCentralCrossRefPubMed
15.
go back to reference Zhang HF, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903PubMedCentralCrossRefPubMed Zhang HF, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903PubMedCentralCrossRefPubMed
16.
go back to reference Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16:515–523PubMedCentralCrossRefPubMed Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16:515–523PubMedCentralCrossRefPubMed
17.
go back to reference Quan W, Lee MS (2013) Role of autophagy in the control of body metabolism. Endocrinol Metab (Seoul) 28:6–11CrossRef Quan W, Lee MS (2013) Role of autophagy in the control of body metabolism. Endocrinol Metab (Seoul) 28:6–11CrossRef
18.
go back to reference Baetz D, Regula KM, Ens K et al (2005) Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 112:3777–3785CrossRefPubMed Baetz D, Regula KM, Ens K et al (2005) Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation 112:3777–3785CrossRefPubMed
19.
go back to reference Mammucari C, Milan G, Romanello V et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471CrossRefPubMed Mammucari C, Milan G, Romanello V et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471CrossRefPubMed
20.
22.
go back to reference Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMed Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMed
23.
go back to reference de Moura MB, Van Houten B (2014) Bioenergetic analysis of intact mammalian cells using the Seahorse XF24 extracellular flux analyzer and a luciferase ATP assay. Methods Mol Biol 1105:589–602CrossRefPubMed de Moura MB, Van Houten B (2014) Bioenergetic analysis of intact mammalian cells using the Seahorse XF24 extracellular flux analyzer and a luciferase ATP assay. Methods Mol Biol 1105:589–602CrossRefPubMed
24.
go back to reference Keipert S, Jastroch M (2014) Brite/beige fat and UCP1—is it thermogenesis? Biochim Biophys Acta 1837:1075–1082CrossRefPubMed Keipert S, Jastroch M (2014) Brite/beige fat and UCP1—is it thermogenesis? Biochim Biophys Acta 1837:1075–1082CrossRefPubMed
25.
go back to reference Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317CrossRefPubMed Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317CrossRefPubMed
26.
go back to reference Houstek J, Kopecky J, Rychter Z, Soukup T (1988) Uncoupling protein in embryonic brown adipose tissue—existence of nonthermogenic and thermogenic mitochondria. Biochim Biophys Acta 935:19–25CrossRefPubMed Houstek J, Kopecky J, Rychter Z, Soukup T (1988) Uncoupling protein in embryonic brown adipose tissue—existence of nonthermogenic and thermogenic mitochondria. Biochim Biophys Acta 935:19–25CrossRefPubMed
27.
go back to reference Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355CrossRefPubMed Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355CrossRefPubMed
28.
go back to reference Koh YJ, Park BH, Park JH et al (2009) Activation of PPARγ induces profound multilocularization of adipocytes in adult mouse white adipose tissues. Exp Mol Med 41:880–895PubMedCentralCrossRefPubMed Koh YJ, Park BH, Park JH et al (2009) Activation of PPARγ induces profound multilocularization of adipocytes in adult mouse white adipose tissues. Exp Mol Med 41:880–895PubMedCentralCrossRefPubMed
29.
go back to reference Lopez-Lluch G, Hunt N, Jones B et al (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 103:1768–1773PubMedCentralCrossRefPubMed Lopez-Lluch G, Hunt N, Jones B et al (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A 103:1768–1773PubMedCentralCrossRefPubMed
30.
32.
go back to reference Adams M, Montague CT, Prins JB et al (1997) Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 100:3149–3153PubMedCentralCrossRefPubMed Adams M, Montague CT, Prins JB et al (1997) Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 100:3149–3153PubMedCentralCrossRefPubMed
33.
go back to reference Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y (2003) PPAR-γ activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52:291–299CrossRefPubMed Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y (2003) PPAR-γ activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52:291–299CrossRefPubMed
34.
go back to reference Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566CrossRefPubMed Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566CrossRefPubMed
35.
go back to reference Larsen TM, Toubro S, Astrup A (2003) PPARγ agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 27:147–161CrossRefPubMed Larsen TM, Toubro S, Astrup A (2003) PPARγ agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 27:147–161CrossRefPubMed
36.
go back to reference Lessard SJ, Rivas DA, Chen ZP et al (2007) Tissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance. Diabetes 56:1856–1864CrossRefPubMed Lessard SJ, Rivas DA, Chen ZP et al (2007) Tissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance. Diabetes 56:1856–1864CrossRefPubMed
37.
go back to reference Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L (2010) The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 11:459–465PubMedCentralCrossRefPubMed Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L (2010) The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 11:459–465PubMedCentralCrossRefPubMed
38.
go back to reference Li Y, Wang Y, Kim E et al (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282:35803–35813CrossRefPubMed Li Y, Wang Y, Kim E et al (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282:35803–35813CrossRefPubMed
39.
go back to reference Burton TR, Eisenstat DD, Gibson SB (2009) BNIP3 (Bcl-2 19 kDa interacting protein) acts as transcriptional repressor of apoptosis-inducing factor expression preventing cell death in human malignant gliomas. J Neurosci 29:4189–4199PubMedCentralCrossRefPubMed Burton TR, Eisenstat DD, Gibson SB (2009) BNIP3 (Bcl-2 19 kDa interacting protein) acts as transcriptional repressor of apoptosis-inducing factor expression preventing cell death in human malignant gliomas. J Neurosci 29:4189–4199PubMedCentralCrossRefPubMed
40.
go back to reference Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125:478–486PubMedCentralCrossRefPubMed Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125:478–486PubMedCentralCrossRefPubMed
41.
go back to reference Cerquetti L, Sampaoli C, Amendola D et al (2011) Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells. Exp Cell Res 317:1397–1410CrossRefPubMed Cerquetti L, Sampaoli C, Amendola D et al (2011) Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells. Exp Cell Res 317:1397–1410CrossRefPubMed
42.
go back to reference Wu J, Wu JJ, Yang LJ, Wei LX, Zou DJ (2013) Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5′-AMP-activated protein kinase modulation. Endocrine 44:87–98CrossRefPubMed Wu J, Wu JJ, Yang LJ, Wei LX, Zou DJ (2013) Rosiglitazone protects against palmitate-induced pancreatic beta-cell death by activation of autophagy via 5′-AMP-activated protein kinase modulation. Endocrine 44:87–98CrossRefPubMed
44.
go back to reference Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856PubMedCentralCrossRefPubMed Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856PubMedCentralCrossRefPubMed
45.
go back to reference Shen Z, Liang X, Rogers CQ, Rideout D, You M (2010) Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 298:G364–G374PubMedCentralCrossRefPubMed Shen Z, Liang X, Rogers CQ, Rideout D, You M (2010) Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 298:G364–G374PubMedCentralCrossRefPubMed
46.
go back to reference Koh EH, Park JY, Park HS et al (2007) Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56:2973–2981CrossRefPubMed Koh EH, Park JY, Park HS et al (2007) Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56:2973–2981CrossRefPubMed
47.
go back to reference Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188CrossRefPubMed Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188CrossRefPubMed
48.
go back to reference Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581PubMedCentralCrossRefPubMed Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581PubMedCentralCrossRefPubMed
Metadata
Title
BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice
Authors
Jin Woo Choi
Anna Jo
Min Kim
Ho Seon Park
Sung Soo Chung
Shinae Kang
Kyong Soo Park
Publication date
01-03-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3836-9

Other articles of this Issue 3/2016

Diabetologia 3/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine