Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2010

01-01-2010 | Miscellaneous

Blood velocity measurement in the posterior segment of the rabbit eye using combined spectral Doppler and power Doppler ultrasound

Authors: Walid Abdallah, Amani Fawzi, Hitenkumar Patel, Grant Dagliyan, Naoki Matsuoka, Edward Grant, Mark Humayun

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2010

Login to get access

Abstract

Background

It is challenging for the current Doppler imaging to detect blood flow in small retinal vessels. Power Doppler, with its high sensitivity to detect minimal blood flow, can be used with spectral Doppler to measure blood velocity in small vessels of the eye and orbit.

Methods

Sixteen eyes of twelve normal pigmented rabbits were studied, using a dedicated small animal, high-resolution imaging unit (Vevo 770) and 17.6 MHz ultrasound probe. Spectral Doppler (ISPPA = 67.1 W/cm2, ISPTA = 483.7 mW/cm2, MI = 0.5) was combined with power Doppler (ISPPA = 137.7 W/cm2, ISPTA = 83.1 mW/cm2, MI = 0.77) to measure the blood velocity over each identified vessel, including the central retinal artery and vein, branch retinal artery and vein, choroidal vein, and the long and short posterior ciliary artery. Three readings from each vessel were averaged to reduce measurement error. Three indices were calculated from the arterial blood velocity readings: the resistive index, the pulsatility index and the A/B ratio.

Results

The highest arterial blood velocity was measured over the long posterior ciliary artery; peak systolic velocity was 18.29 cm/s and end diastolic velocity was 16.63 cm/s, while the lowest arterial blood velocity was measured over the branch retinal artery; peak systolic velocity was 5.08 cm/s and end diastolic velocity was 3.25 cm/s. On the other hand, the highest venous blood velocity was measured over the choroidal veins (7.0 cm/s), and the lowest venous blood velocity was measured over the branch retinal vein (2.88 cm/s). No statistically significant difference was observed between the nasal and temporal retinal arterial blood velocity. Combining power Doppler with spectral Doppler imaging caused no damage and is a safe technique to measure blood velocity.

Conclusion

A combination of spectral Doppler and power Doppler ultrasound can be used as a noninvasive and efficient tool for reproducible measurement of the blood velocity in the posterior segment.
Literature
1.
go back to reference Gracner T (2004) Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica 218:237–242CrossRefPubMed Gracner T (2004) Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica 218:237–242CrossRefPubMed
2.
go back to reference Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA (1996) Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 37:886–897PubMed Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA (1996) Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 37:886–897PubMed
3.
go back to reference Cunha-Vaz JG, Fonseca JR, de Abreu JR, Lima JJ (1978) Studies on retinal blood flow. II. Diabetic retinopathy. Arch Ophthalmol 96:809–811PubMed Cunha-Vaz JG, Fonseca JR, de Abreu JR, Lima JJ (1978) Studies on retinal blood flow. II. Diabetic retinopathy. Arch Ophthalmol 96:809–811PubMed
4.
go back to reference Lorenzi M, Feke GT, Cagliero E, Pitler L, Schaumberg DA, Berisha F, Nathan DM, McMeel JW (2008) Retinal haemodynamics in individuals with well-controlled type 1 diabetes. Diabetologia 51:361–364CrossRefPubMed Lorenzi M, Feke GT, Cagliero E, Pitler L, Schaumberg DA, Berisha F, Nathan DM, McMeel JW (2008) Retinal haemodynamics in individuals with well-controlled type 1 diabetes. Diabetologia 51:361–364CrossRefPubMed
5.
go back to reference Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, Egan K, Gragoudas ES (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646PubMed Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, Egan K, Gragoudas ES (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646PubMed
6.
go back to reference Ciulla TA, Harris A, Chung HS, Danis RP, Kagemann L, McNulty L, Pratt LM, Martin BJ (1999) Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration. Am J Ophthalmol 128:75–80CrossRefPubMed Ciulla TA, Harris A, Chung HS, Danis RP, Kagemann L, McNulty L, Pratt LM, Martin BJ (1999) Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration. Am J Ophthalmol 128:75–80CrossRefPubMed
7.
go back to reference Butt Z, O'Brien C, McKillop G, Aspinall P, Allan P (1997) Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci 38:690–696PubMed Butt Z, O'Brien C, McKillop G, Aspinall P, Allan P (1997) Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci 38:690–696PubMed
8.
go back to reference Butt Z, McKillop G, O'Brien C, Allan P, Aspinall P (1995) Measurement of ocular blood flow velocity using colour Doppler imaging in low tension glaucoma. Eye 9:29–33PubMed Butt Z, McKillop G, O'Brien C, Allan P, Aspinall P (1995) Measurement of ocular blood flow velocity using colour Doppler imaging in low tension glaucoma. Eye 9:29–33PubMed
9.
go back to reference Akarsu C, Bilgili MY (2004) Color Doppler imaging in ocular hypertension and open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 242:125–129CrossRefPubMed Akarsu C, Bilgili MY (2004) Color Doppler imaging in ocular hypertension and open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 242:125–129CrossRefPubMed
10.
go back to reference Williamson TH, Baxter GM (1994) Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization. Ophthalmology 101:1362–1372PubMed Williamson TH, Baxter GM (1994) Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization. Ophthalmology 101:1362–1372PubMed
11.
go back to reference Chen HC, Gupta A, Wiek J, Kohner EM (1998) Retinal blood flow in nonischemic central retinal vein occlusion. Ophthalmology 105:772–775CrossRefPubMed Chen HC, Gupta A, Wiek J, Kohner EM (1998) Retinal blood flow in nonischemic central retinal vein occlusion. Ophthalmology 105:772–775CrossRefPubMed
12.
go back to reference Konno S, Feke GT, Yoshida A, Fujio N, Goger DG, Buzney SM (1996) Retinal blood flow changes in type I diabetes. A long-term follow-up study. Invest Ophthalmol Vis Sci 37:1140–1148PubMed Konno S, Feke GT, Yoshida A, Fujio N, Goger DG, Buzney SM (1996) Retinal blood flow changes in type I diabetes. A long-term follow-up study. Invest Ophthalmol Vis Sci 37:1140–1148PubMed
13.
go back to reference Ogasawara H, Feke GT, Yoshida A, Milbocker MT, Weiter JJ, McMeel JW (1992) Retinal blood flow alterations associated with scleral buckling and encircling procedures. Br J Ophthalmol 76:275–279CrossRefPubMed Ogasawara H, Feke GT, Yoshida A, Milbocker MT, Weiter JJ, McMeel JW (1992) Retinal blood flow alterations associated with scleral buckling and encircling procedures. Br J Ophthalmol 76:275–279CrossRefPubMed
14.
go back to reference Fujio N, Feke GT, Ogasawara H, Goger DG, Yoshida A, McMeel JW (1994) Quantitative circulatory measurements in branch retinal vessel occlusion. Eye 8:324–328PubMed Fujio N, Feke GT, Ogasawara H, Goger DG, Yoshida A, McMeel JW (1994) Quantitative circulatory measurements in branch retinal vessel occlusion. Eye 8:324–328PubMed
15.
go back to reference Joos KM, Pillunat LE, Knighton RW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216CrossRefPubMed Joos KM, Pillunat LE, Knighton RW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216CrossRefPubMed
16.
go back to reference Nicolela MT, Hnik P, Schulzer M, Drance SM (1997) Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma 6:157–164CrossRefPubMed Nicolela MT, Hnik P, Schulzer M, Drance SM (1997) Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma 6:157–164CrossRefPubMed
17.
go back to reference Tamaki Y, Araie M, Tomita K, Nagahara M, Tomidokoro A, Fujii H (1997) Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon. Jpn J Ophthalmol 41:49–54CrossRefPubMed Tamaki Y, Araie M, Tomita K, Nagahara M, Tomidokoro A, Fujii H (1997) Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon. Jpn J Ophthalmol 41:49–54CrossRefPubMed
18.
go back to reference Mori F, Konno S, Hikichi T, Yamaguchi Y, Ishiko S, Yoshida A (2001) Pulsatile ocular blood flow study: decreases in exudative age related macular degeneration. Br J Ophthalmol 85:531–533CrossRefPubMed Mori F, Konno S, Hikichi T, Yamaguchi Y, Ishiko S, Yoshida A (2001) Pulsatile ocular blood flow study: decreases in exudative age related macular degeneration. Br J Ophthalmol 85:531–533CrossRefPubMed
19.
go back to reference Dimitrova G, Tamaki Y, Kato S (2002) Retrobulbar circulation in patients with age-related maculopathy. Eye 16:580–586CrossRefPubMed Dimitrova G, Tamaki Y, Kato S (2002) Retrobulbar circulation in patients with age-related maculopathy. Eye 16:580–586CrossRefPubMed
20.
21.
go back to reference Jain SP, Fan PH, Philpot EF, Nanda NC, Aggarwal KK, Moos S, Yoganathan AP (1991) Influence of various instrument settings on the flow information derived from the power mode. Ultrasound Med Biol 17:49–54CrossRefPubMed Jain SP, Fan PH, Philpot EF, Nanda NC, Aggarwal KK, Moos S, Yoganathan AP (1991) Influence of various instrument settings on the flow information derived from the power mode. Ultrasound Med Biol 17:49–54CrossRefPubMed
22.
go back to reference Higa A, Nakanishi-Ueda T, Arai Y, Tsuchiya T, Ueda T, Fukuda S, Watanabe K, Kan K, Yasuhara H, Koide R, Armstrong D (2002) Lipid hydroperoxide induced corneal neovascularization in hyperglycemic rabbits. Curr Eye Res 25:49–53CrossRefPubMed Higa A, Nakanishi-Ueda T, Arai Y, Tsuchiya T, Ueda T, Fukuda S, Watanabe K, Kan K, Yasuhara H, Koide R, Armstrong D (2002) Lipid hydroperoxide induced corneal neovascularization in hyperglycemic rabbits. Curr Eye Res 25:49–53CrossRefPubMed
23.
go back to reference Julien S, Kreppel F, Beck S, Heiduschka P, Brito V, Schnichels S, Kochanek S, Schraermeyer U (2008) A reproducible and quantifiable model of choroidal neovascularization induced by VEGF A165 after subretinal adenoviral gene transfer in the rabbit. Mol Vis 14:1358–1372PubMed Julien S, Kreppel F, Beck S, Heiduschka P, Brito V, Schnichels S, Kochanek S, Schraermeyer U (2008) A reproducible and quantifiable model of choroidal neovascularization induced by VEGF A165 after subretinal adenoviral gene transfer in the rabbit. Mol Vis 14:1358–1372PubMed
24.
go back to reference Kimura H, Sakamoto T, Hinton DR, Spee C, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1995) A new model of subretinal neovascularization in the rabbit. Invest Ophthalmol Vis Sci 36:2110–2119PubMed Kimura H, Sakamoto T, Hinton DR, Spee C, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1995) A new model of subretinal neovascularization in the rabbit. Invest Ophthalmol Vis Sci 36:2110–2119PubMed
25.
go back to reference Ogura H, Nakanishi-Ueda T, Ueda T, Iwai S, Uchida S, Saito Y, Taguchi Y, Yasuhara H, Armstrong D, Oguchi K, Koide R (2007) Effect of a dihydrobenzofuran derivative on lipid hydroperoxide-induced rabbit corneal neovascularization. J Pharmacol Sci 103:234–240CrossRefPubMed Ogura H, Nakanishi-Ueda T, Ueda T, Iwai S, Uchida S, Saito Y, Taguchi Y, Yasuhara H, Armstrong D, Oguchi K, Koide R (2007) Effect of a dihydrobenzofuran derivative on lipid hydroperoxide-induced rabbit corneal neovascularization. J Pharmacol Sci 103:234–240CrossRefPubMed
26.
go back to reference Ueda T, Fukuda S, Browne R, Jenis E, Spengler R, Chou R, Buch P, Aljada A, Dandona P, Sasisekharan R, Dorey CK, Armstrong D (1998) Lipid hydroperoxide-induced tumor necrosis factor (TNF)-alpha, vascular endothelial growth factor and neovascularization in the rabbit cornea: effect of TNF inhibition. Angiogenesis 1:174–184CrossRefPubMed Ueda T, Fukuda S, Browne R, Jenis E, Spengler R, Chou R, Buch P, Aljada A, Dandona P, Sasisekharan R, Dorey CK, Armstrong D (1998) Lipid hydroperoxide-induced tumor necrosis factor (TNF)-alpha, vascular endothelial growth factor and neovascularization in the rabbit cornea: effect of TNF inhibition. Angiogenesis 1:174–184CrossRefPubMed
27.
go back to reference Qiu G, Stewart JM, Sadda S, Freda R, Lee S, Guven D, De Juan E Jr, Varner SE (2006) A new model of experimental subretinal neovascularization in the rabbit. Exp Eye Res 83:141–152CrossRefPubMed Qiu G, Stewart JM, Sadda S, Freda R, Lee S, Guven D, De Juan E Jr, Varner SE (2006) A new model of experimental subretinal neovascularization in the rabbit. Exp Eye Res 83:141–152CrossRefPubMed
28.
go back to reference Framme C, Sachs HG, Kobuch K, Flucke B, Birngruber R (2008) Clinical evaluation of experimentally induced choroidal neovascularizations in pigmented rabbits by subretinal injection of lipid hydroperoxide and consecutive preliminary photodynamic treatment with Tookad. Ophthalmologica 222:254–264CrossRefPubMed Framme C, Sachs HG, Kobuch K, Flucke B, Birngruber R (2008) Clinical evaluation of experimentally induced choroidal neovascularizations in pigmented rabbits by subretinal injection of lipid hydroperoxide and consecutive preliminary photodynamic treatment with Tookad. Ophthalmologica 222:254–264CrossRefPubMed
29.
go back to reference Robinson MR, Baffi J, Yuan P, Sung C, Byrnes G, Cox TA, Csaky KG (2002) Safety and pharmacokinetics of intravitreal 2-methoxyestradiol implants in normal rabbit and pharmacodynamics in a rat model of choroidal neovascularization. Exp Eye Res 74:309–317CrossRefPubMed Robinson MR, Baffi J, Yuan P, Sung C, Byrnes G, Cox TA, Csaky KG (2002) Safety and pharmacokinetics of intravitreal 2-methoxyestradiol implants in normal rabbit and pharmacodynamics in a rat model of choroidal neovascularization. Exp Eye Res 74:309–317CrossRefPubMed
30.
go back to reference Byrne SF, Green RL (2002) Ultrasound of the eye and orbit, 2nd edn. Mosby Year Book, St. Louis Byrne SF, Green RL (2002) Ultrasound of the eye and orbit, 2nd edn. Mosby Year Book, St. Louis
31.
go back to reference Liu JH, Li R, Nelson TR, Weinreb RN (2007) Sympathetic activities influence blood-flow velocity and resistance in the rabbit ophthalmic artery. J Ocul Pharmacol Ther 23:110–115CrossRefPubMed Liu JH, Li R, Nelson TR, Weinreb RN (2007) Sympathetic activities influence blood-flow velocity and resistance in the rabbit ophthalmic artery. J Ocul Pharmacol Ther 23:110–115CrossRefPubMed
32.
go back to reference Taylor KJW, Burns PN, Wells PNT (1995) Clinical applications of Doppler ultrasound, 2nd edn. Raven Press, New York Taylor KJW, Burns PN, Wells PNT (1995) Clinical applications of Doppler ultrasound, 2nd edn. Raven Press, New York
33.
go back to reference Liu JH, Li R, Nelson TR, Weinreb RN (2007) Resistance to blood flow in the rabbit ophthalmic artery after topical treatment with timolol. J Ocul Pharmacol Ther 23:103–109CrossRefPubMed Liu JH, Li R, Nelson TR, Weinreb RN (2007) Resistance to blood flow in the rabbit ophthalmic artery after topical treatment with timolol. J Ocul Pharmacol Ther 23:103–109CrossRefPubMed
34.
go back to reference Yamada R, Hayashi Y, Ueno S, Yamada S (1999) Blood flow velocity in the central retinal artery of exotoxin-induced uveitis in rabbits. Nippon Ganka Gakkai Zasshi 103:591–596PubMed Yamada R, Hayashi Y, Ueno S, Yamada S (1999) Blood flow velocity in the central retinal artery of exotoxin-induced uveitis in rabbits. Nippon Ganka Gakkai Zasshi 103:591–596PubMed
35.
go back to reference Hill DW (1976) Measurement of retinal blood flow. Trans Ophthalmol Soc UK 96:199–201PubMed Hill DW (1976) Measurement of retinal blood flow. Trans Ophthalmol Soc UK 96:199–201PubMed
36.
go back to reference Rassam SMB, Patel V, Chen C, Kohner EM (1996) Regional retinal blood flow and vascular autoregulation. Eye 10:331–337PubMed Rassam SMB, Patel V, Chen C, Kohner EM (1996) Regional retinal blood flow and vascular autoregulation. Eye 10:331–337PubMed
37.
go back to reference Riva CE, Grunwald JE, Sinclair SH, Petrig BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132PubMed Riva CE, Grunwald JE, Sinclair SH, Petrig BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132PubMed
38.
go back to reference Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J, Weiter JJ (1989) Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30:58–65PubMed Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J, Weiter JJ (1989) Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30:58–65PubMed
39.
go back to reference Lin GS, Milburn DT, Briggs S (1998) Power Doppler: how it works, its clinical benefits, and recent technologic advances. J Diagn Med Sonogr 14:151–161CrossRef Lin GS, Milburn DT, Briggs S (1998) Power Doppler: how it works, its clinical benefits, and recent technologic advances. J Diagn Med Sonogr 14:151–161CrossRef
40.
go back to reference Mendivil A, Cuartero V, Mendivil MP (1995) Color Doppler imaging of the ocular vessels. Graefes Arch Clin Exp Ophthalmol 233:135–139CrossRefPubMed Mendivil A, Cuartero V, Mendivil MP (1995) Color Doppler imaging of the ocular vessels. Graefes Arch Clin Exp Ophthalmol 233:135–139CrossRefPubMed
41.
go back to reference Silverman RH, Kruse DE, Coleman DJ, Ferrara KW (1999) High-resolution ultrasonic imaging of blood flow in the anterior segment of the eye. Invest Ophthalmol Vis Sci 40:1373–1381PubMed Silverman RH, Kruse DE, Coleman DJ, Ferrara KW (1999) High-resolution ultrasonic imaging of blood flow in the anterior segment of the eye. Invest Ophthalmol Vis Sci 40:1373–1381PubMed
42.
go back to reference Bill A (1985) Some aspects of the ocular circulation. Friedenwald lecture. Invest Ophthalmol Vis Sci 26:410–424PubMed Bill A (1985) Some aspects of the ocular circulation. Friedenwald lecture. Invest Ophthalmol Vis Sci 26:410–424PubMed
43.
go back to reference Wise GN, Dollery CT, Henkind P (1971) The retinal circulation. Harper and Row, Evanston Wise GN, Dollery CT, Henkind P (1971) The retinal circulation. Harper and Row, Evanston
44.
go back to reference Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646PubMed Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646PubMed
45.
go back to reference Keough EM, Wilcox LM Jr, Connolly RJ, Hotte CE (1981) (1981) Comparative ocular blood flow. Comp Biochem Physiol 68A:269–271CrossRef Keough EM, Wilcox LM Jr, Connolly RJ, Hotte CE (1981) (1981) Comparative ocular blood flow. Comp Biochem Physiol 68A:269–271CrossRef
46.
go back to reference Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123PubMed Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123PubMed
47.
go back to reference Tomita K, Araie M, Tamaki Y, Nagahara M, Sugiyama T (1999) Effects of nilvadipine, a calcium antagonist, on rabbit ocular circulation and optic nerve head circulation in NTG subjects. Invest Ophthalmol Vis Sci 40:1144–1151PubMed Tomita K, Araie M, Tamaki Y, Nagahara M, Sugiyama T (1999) Effects of nilvadipine, a calcium antagonist, on rabbit ocular circulation and optic nerve head circulation in NTG subjects. Invest Ophthalmol Vis Sci 40:1144–1151PubMed
48.
go back to reference Kiel JW, van Heuven WA (1995) Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 36:579–585PubMed Kiel JW, van Heuven WA (1995) Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 36:579–585PubMed
49.
go back to reference Kiel JW, Shepherd AP (1992) Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33:2399–2410PubMed Kiel JW, Shepherd AP (1992) Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33:2399–2410PubMed
50.
go back to reference Riva CE, Titze P, Hero M, Petrig BL (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760PubMed Riva CE, Titze P, Hero M, Petrig BL (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760PubMed
51.
go back to reference Bayon A, Jara J, Albert A, Fernandez Del Palacio MJ (2002) Two-dimensional and duplex Doppler ultrasonography of the eye in normal rabbits. 27 WSAVA Congress, 8 FECAVA Congress, 37 National Congress of AVEPA. October, 2002, Granada, Spain Bayon A, Jara J, Albert A, Fernandez Del Palacio MJ (2002) Two-dimensional and duplex Doppler ultrasonography of the eye in normal rabbits. 27 WSAVA Congress, 8 FECAVA Congress, 37 National Congress of AVEPA. October, 2002, Granada, Spain
Metadata
Title
Blood velocity measurement in the posterior segment of the rabbit eye using combined spectral Doppler and power Doppler ultrasound
Authors
Walid Abdallah
Amani Fawzi
Hitenkumar Patel
Grant Dagliyan
Naoki Matsuoka
Edward Grant
Mark Humayun
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2010
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-009-1200-9

Other articles of this Issue 1/2010

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2010 Go to the issue