Skip to main content
Top
Published in: Neurotoxicity Research 2/2018

01-02-2018 | ORIGINAL ARTICLE

Blood Glutamate Reducing Effect of Hemofiltration in Critically Ill Patients

Authors: Evgeni Brotfain, Ruslan Kutz, Julia Grinshpun, Benjamin F. Gruenbaum, Shaun E. Gruenbaum, Amit Frenkel, Agzam Zhumadilov, Vladimir Zeldetz, Yoav Bichovsky, Matthew Boyko, Moti Klein, Alexander Zlotnik

Published in: Neurotoxicity Research | Issue 2/2018

Login to get access

Abstract

Glutamate toxicity plays a well-established role in secondary brain damage following acute and chronic brain insults. Previous studies have demonstrated the efficacy of hemodialysis and peritoneal dialysis in reducing blood glutamate levels. However, these methods are not viable options for hemodynamically unstable patients. Given more favorable hemodynamics, longer treatment, and less needed anticoagulation, we investigated whether hemofiltration could be effective in lowering blood glutamate levels. Blood samples were taken from 10 critically ill patients immediately before initiation of hemofiltration and after 1, 2, 4, 6, and 12 h, for a total of 6 blood samples. Samples were sent for determination of glutamate, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), hemoglobin, hematocrit, urea, creatinine, glucose, sodium, potassium, platelet, and white blood cell (WBC) levels. There was a statistically significant reduction in blood glutamate levels at all time points compared to baseline levels. There was no difference in levels of GOT or GPT. Hemofiltration can be a promising method of reducing blood glutamate levels, especially in critically ill patients where hemodialysis and peritoneal dialysis may be contraindicated.
Literature
go back to reference Aliprandi A, Longoni M, Stanzani L, Tremolizzo L, Vaccaro M, Begni B, Galimberti G, Garofolo R, Ferrarese C (2005) Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. J Cereb Blood Flow Metab 25:513–519CrossRefPubMed Aliprandi A, Longoni M, Stanzani L, Tremolizzo L, Vaccaro M, Begni B, Galimberti G, Garofolo R, Ferrarese C (2005) Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. J Cereb Blood Flow Metab 25:513–519CrossRefPubMed
go back to reference Barton IK, Hilton PJ (1993) Veno-venous haemofiltration in the intensive care unit. Clin Intensive Care 4:16–22PubMed Barton IK, Hilton PJ (1993) Veno-venous haemofiltration in the intensive care unit. Clin Intensive Care 4:16–22PubMed
go back to reference Berl S, Takagaki G, Clarke DD, Waelsch H (1962) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J Biol Chem 237:2562–2569PubMed Berl S, Takagaki G, Clarke DD, Waelsch H (1962) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J Biol Chem 237:2562–2569PubMed
go back to reference Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, Melamed I, Regev A, Shapira Y, Teichberg VI (2011) Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci 34:1432–1441CrossRefPubMed Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, Melamed I, Regev A, Shapira Y, Teichberg VI (2011) Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci 34:1432–1441CrossRefPubMed
go back to reference Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Brotfain E, Shapira Y, Zlotnik A (2012a) The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics 9:649–657CrossRefPubMedPubMedCentral Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Brotfain E, Shapira Y, Zlotnik A (2012a) The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics 9:649–657CrossRefPubMedPubMedCentral
go back to reference Boyko M, Stepensky D, Gruenbaum BF, Gruenbaum SE, Melamed I, Ohayon S, Glazer M, Shapira Y, Zlotnik A (2012b) Pharmacokinetics of glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase and their blood glutamate-lowering activity in naive rats. Neurochem Res 37:2198–2205CrossRefPubMed Boyko M, Stepensky D, Gruenbaum BF, Gruenbaum SE, Melamed I, Ohayon S, Glazer M, Shapira Y, Zlotnik A (2012b) Pharmacokinetics of glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase and their blood glutamate-lowering activity in naive rats. Neurochem Res 37:2198–2205CrossRefPubMed
go back to reference Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A (2014) Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 121:971–979CrossRef Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A (2014) Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 121:971–979CrossRef
go back to reference Campos F, Sobrino T, Ramos-Cabrer P, Castellanos M, Blanco M, Rodriguez-Yanez M, Serena J, Leira R, Castillo J (2011a) High blood glutamate oxaloacetate transaminase levels are associated with good functional outcome in acute ischemic stroke. J Cereb Blood Flow Metab 31:1387–1393CrossRefPubMedPubMedCentral Campos F, Sobrino T, Ramos-Cabrer P, Castellanos M, Blanco M, Rodriguez-Yanez M, Serena J, Leira R, Castillo J (2011a) High blood glutamate oxaloacetate transaminase levels are associated with good functional outcome in acute ischemic stroke. J Cereb Blood Flow Metab 31:1387–1393CrossRefPubMedPubMedCentral
go back to reference Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, Rodriguez-Gonzalez R, Brea D, Castillo J (2011b) Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab 31:1378–1386CrossRefPubMedPubMedCentral Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, Rodriguez-Gonzalez R, Brea D, Castillo J (2011b) Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab 31:1378–1386CrossRefPubMedPubMedCentral
go back to reference Castillo J, Davalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27:1060–1065CrossRefPubMed Castillo J, Davalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27:1060–1065CrossRefPubMed
go back to reference Castillo J, Davalos A, Noya M (1997) Progression of ischaemic stroke and excitotoxic aminoacids. Lancet 349:79–83CrossRefPubMed Castillo J, Davalos A, Noya M (1997) Progression of ischaemic stroke and excitotoxic aminoacids. Lancet 349:79–83CrossRefPubMed
go back to reference Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57:671–675CrossRefPubMed Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57:671–675CrossRefPubMed
go back to reference Forni LG, Hilton PJ (1997) Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med 336:1303–1309CrossRefPubMed Forni LG, Hilton PJ (1997) Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med 336:1303–1309CrossRefPubMed
go back to reference Friedrich JO, Wald R, Bagshaw SM, Burns KE, Adhikari NK (2012) Hemofiltration compared to hemodialysis for acute kidney injury: systematic review and meta-analysis. Crit Care 16:R146CrossRefPubMedPubMedCentral Friedrich JO, Wald R, Bagshaw SM, Burns KE, Adhikari NK (2012) Hemofiltration compared to hemodialysis for acute kidney injury: systematic review and meta-analysis. Crit Care 16:R146CrossRefPubMedPubMedCentral
go back to reference Godino Mdel C, Romera VG, Sanchez-Tomero JA, Pacheco J, Canals S, Lerma J, Vivancos J, Moro MA, Torres M, Lizasoain I, Sanchez-Prieto J (2013) Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest 123:4359–4363CrossRefPubMed Godino Mdel C, Romera VG, Sanchez-Tomero JA, Pacheco J, Canals S, Lerma J, Vivancos J, Moro MA, Torres M, Lizasoain I, Sanchez-Prieto J (2013) Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest 123:4359–4363CrossRefPubMed
go back to reference Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126CrossRefPubMed Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126CrossRefPubMed
go back to reference Graham LT Jr, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497CrossRefPubMed Graham LT Jr, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497CrossRefPubMed
go back to reference Green PS, Simpkins JW (2000) Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18:347–358CrossRefPubMed Green PS, Simpkins JW (2000) Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18:347–358CrossRefPubMed
go back to reference Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386CrossRefPubMed Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386CrossRefPubMed
go back to reference Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49:735–741CrossRefPubMed Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49:735–741CrossRefPubMed
go back to reference Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–14CrossRefPubMed Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–14CrossRefPubMed
go back to reference McCulloch J (1992) Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br J Clin Pharmacol 34:106–114CrossRefPubMedPubMedCentral McCulloch J (1992) Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br J Clin Pharmacol 34:106–114CrossRefPubMedPubMedCentral
go back to reference McLaggan D, Naprstek J, Buurman ET, Epstein W (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269:1911–1917PubMed McLaggan D, Naprstek J, Buurman ET, Epstein W (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269:1911–1917PubMed
go back to reference Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60CrossRefPubMed Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60CrossRefPubMed
go back to reference Nagy D, Knapp L, Marosi M, Farkas T, Kis Z, Vecsei L, Teichberg VI, Toldi J (2010) Effects of blood glutamate scavenging on cortical evoked potentials. Cell Mol Neurobiol 30:1101–1106CrossRefPubMed Nagy D, Knapp L, Marosi M, Farkas T, Kis Z, Vecsei L, Teichberg VI, Toldi J (2010) Effects of blood glutamate scavenging on cortical evoked potentials. Cell Mol Neurobiol 30:1101–1106CrossRefPubMed
go back to reference O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895CrossRefPubMed O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895CrossRefPubMed
go back to reference Patel P, Nandwani V, McCarthy PJ, Conrad SA, Keith Scott L (2010) Continuous renal replacement therapies: a brief primer for the neurointensivist. Neurocrit Care 13:286–294CrossRefPubMed Patel P, Nandwani V, McCarthy PJ, Conrad SA, Keith Scott L (2010) Continuous renal replacement therapies: a brief primer for the neurointensivist. Neurocrit Care 13:286–294CrossRefPubMed
go back to reference Rogachev B, Ohayon S, Saad A, Vorobiovsky V, Gruenbaum BF, Leibowitz A, Boyko M, Shapira Y, Shnaider A, Zlotnik M, Azab AN, Zlotnik A (2012) The effects of hemodialysis on blood glutamate levels in chronic renal failure: implementation for neuroprotection. J Crit Care 27:743 e1-7CrossRefPubMed Rogachev B, Ohayon S, Saad A, Vorobiovsky V, Gruenbaum BF, Leibowitz A, Boyko M, Shapira Y, Shnaider A, Zlotnik M, Azab AN, Zlotnik A (2012) The effects of hemodialysis on blood glutamate levels in chronic renal failure: implementation for neuroprotection. J Crit Care 27:743 e1-7CrossRefPubMed
go back to reference Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, Shapira Y, Vorobiev M, Zlotnik A (2013) The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol 25:262–266CrossRefPubMed Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, Shapira Y, Vorobiev M, Zlotnik A (2013) The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol 25:262–266CrossRefPubMed
go back to reference Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, Cardona X, Inguaggiato P, Pilotto L, d’Intini V, Bellomo R (2003) Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs 27:792–801CrossRefPubMed Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, Cardona X, Inguaggiato P, Pilotto L, d’Intini V, Bellomo R (2003) Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs 27:792–801CrossRefPubMed
go back to reference Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 4:209–216CrossRefPubMed Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 4:209–216CrossRefPubMed
go back to reference Soupart A, Silver S, Schrooeder B, Sterns R, Decaux G (2002) Rapid (24-hour) reaccumulation of brain organic osmolytes (particularly myo-inositol) in azotemic rats after correction of chronic hyponatremia. J Am Soc Nephrol 13:1433–1441CrossRefPubMed Soupart A, Silver S, Schrooeder B, Sterns R, Decaux G (2002) Rapid (24-hour) reaccumulation of brain organic osmolytes (particularly myo-inositol) in azotemic rats after correction of chronic hyponatremia. J Am Soc Nephrol 13:1433–1441CrossRefPubMed
go back to reference Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci 143:126–131CrossRefPubMed Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci 143:126–131CrossRefPubMed
go back to reference Teichberg VI, Cohen-Kashi-Malina K, Cooper I, Zlotnik A (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158:301–308CrossRefPubMed Teichberg VI, Cohen-Kashi-Malina K, Cooper I, Zlotnik A (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158:301–308CrossRefPubMed
go back to reference Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF (1996) Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl 67:40–44PubMed Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF (1996) Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl 67:40–44PubMed
go back to reference Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203:213–220CrossRefPubMed Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203:213–220CrossRefPubMed
go back to reference Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Matuzani-Ruban A, Leon A, Shapira Y, Teichberg VI (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33:1044–1050CrossRefPubMed Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Matuzani-Ruban A, Leon A, Shapira Y, Teichberg VI (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33:1044–1050CrossRefPubMed
go back to reference Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, Brotfain E, Klin Y, Shapira Y, Teichberg VI (2009) The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol 21:235–241CrossRefPubMed Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, Brotfain E, Klin Y, Shapira Y, Teichberg VI (2009) The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol 21:235–241CrossRefPubMed
go back to reference Zlotnik A, Gruenbaum BF, Mohar B, Kuts R, Gruenbaum SE, Ohayon S, Boyko M, Klin Y, Sheiner E, Shaked G, Shapira Y, Teichberg VI (2011a) The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol Reprod 84:581–586CrossRefPubMed Zlotnik A, Gruenbaum BF, Mohar B, Kuts R, Gruenbaum SE, Ohayon S, Boyko M, Klin Y, Sheiner E, Shaked G, Shapira Y, Teichberg VI (2011a) The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol Reprod 84:581–586CrossRefPubMed
go back to reference Zlotnik A, Ohayon S, Gruenbaum BF, Gruenbaum SE, Mohar B, Boyko M, Klin Y, Sheiner E, Shaked G, Shapira Y, Teichberg VI (2011b) Determination of factors affecting glutamate concentrations in the whole blood of healthy human volunteers. J Neurosurg Anesthesiol 23:45–49CrossRefPubMed Zlotnik A, Ohayon S, Gruenbaum BF, Gruenbaum SE, Mohar B, Boyko M, Klin Y, Sheiner E, Shaked G, Shapira Y, Teichberg VI (2011b) Determination of factors affecting glutamate concentrations in the whole blood of healthy human volunteers. J Neurosurg Anesthesiol 23:45–49CrossRefPubMed
go back to reference Zlotnik A, Klin Y, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Kotz R, Dubilet M, Boyko M, Shapira Y (2012) Teichberg VI: beta2 adrenergic-mediated reduction of blood glutamate levels and improved neurological outcome after traumatic brain injury in rats. J Neurosurg Anesthesiol 24:30–38CrossRefPubMed Zlotnik A, Klin Y, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Kotz R, Dubilet M, Boyko M, Shapira Y (2012) Teichberg VI: beta2 adrenergic-mediated reduction of blood glutamate levels and improved neurological outcome after traumatic brain injury in rats. J Neurosurg Anesthesiol 24:30–38CrossRefPubMed
Metadata
Title
Blood Glutamate Reducing Effect of Hemofiltration in Critically Ill Patients
Authors
Evgeni Brotfain
Ruslan Kutz
Julia Grinshpun
Benjamin F. Gruenbaum
Shaun E. Gruenbaum
Amit Frenkel
Agzam Zhumadilov
Vladimir Zeldetz
Yoav Bichovsky
Matthew Boyko
Moti Klein
Alexander Zlotnik
Publication date
01-02-2018
Publisher
Springer US
Published in
Neurotoxicity Research / Issue 2/2018
Print ISSN: 1029-8428
Electronic ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-017-9791-0

Other articles of this Issue 2/2018

Neurotoxicity Research 2/2018 Go to the issue