Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Bixa orellana leaf extract suppresses histamine-induced endothelial hyperpermeability via the PLC-NO-cGMP signaling cascade

Authors: Yoke Keong Yong, Hoe Siong Chiong, Muhd Nazrul Somchit, Zuraini Ahmad

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.

Methods

The endothelial protective effect of AEBO was assess using an in vitro vascular permeability assay kit. Human umbilical vein endothelial cells (HUVEC) were used in the current study. HUVEC were pre-treated with AEBO for 12 h before histamine induction. Vascular permeability was evaluated by the amount of FITC-dextran leakage into the lower chamber. In order to elucidate the mechanism of action of AEBO, phospholipase C (PLC) activity, intracellular calcium level, nitric oxide (NO) concentration, cyclic guanosine monophosphate (cGMP) production and protein kinase C (PKC) activity were determined following histamine challenge.

Results

Histamine-induced increased HUVEC permeability was significantly attenuated by pretreatment with AEBO in a time- and concentration-dependent manner. Upregulation of PLC activity caused by histamine in HUVEC was suppressed by pretreatment with AEBO. Pretreatment with AEBO also blocked the production of intracellular calcium induced by histamine in HUVEC. In addition, AEBO suppressed the NO-cGMP signaling cascade when HUVEC were challenged with histamine. Moreover, PKC activity was significantly abolished by pretreatment with AEBO in HUVEC under histamine condition.

Conclusion

In conclusion, the present data suggest that AEBO could suppress histamine-induced increased endothelial permeability and the activity may be closely related with the inhibition of the PLC-NO-cGMP signaling pathway and PKC activity.
Literature
2.
go back to reference Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiva F, et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol. 2002;282:F1140–9.CrossRefPubMed Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiva F, et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol. 2002;282:F1140–9.CrossRefPubMed
4.
go back to reference Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A. Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci. 2013;34:33–58.CrossRefPubMed Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A. Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci. 2013;34:33–58.CrossRefPubMed
5.
go back to reference Rozenberg I, Sluka SHM, Rohrer L, Hofmann J, Becher B, Akhmedov A, et al. Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoprotein. Arterioscler Thromb Vasc Biol. 2010;30:923–30.CrossRefPubMed Rozenberg I, Sluka SHM, Rohrer L, Hofmann J, Becher B, Akhmedov A, et al. Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoprotein. Arterioscler Thromb Vasc Biol. 2010;30:923–30.CrossRefPubMed
6.
go back to reference Buchan KW, Martin W. Modulation of barrier function of bovine aortic and pulmonary artery endothelial cells: dissociation from cytosolic calcium content. Br J Pharmacol. 1992;107:932–8.CrossRefPubMedPubMedCentral Buchan KW, Martin W. Modulation of barrier function of bovine aortic and pulmonary artery endothelial cells: dissociation from cytosolic calcium content. Br J Pharmacol. 1992;107:932–8.CrossRefPubMedPubMedCentral
7.
go back to reference Bull HA, Courtney PF, Rustin MH, Dowd PM. Characterization of histamine receptor sub-types regulating prostacyclin release from human endothelial cells. Br J Pharmacol. 1992;107:276–81.CrossRefPubMedPubMedCentral Bull HA, Courtney PF, Rustin MH, Dowd PM. Characterization of histamine receptor sub-types regulating prostacyclin release from human endothelial cells. Br J Pharmacol. 1992;107:276–81.CrossRefPubMedPubMedCentral
8.
go back to reference Yuan Y, Granger HJ, Zawieja DC, DeFily DV, Chilian WM. Histamine increases venular permeability via a phospholipase C – NO synthase – guanylate cyclase cascade. Am J Physiol. 1993;264:H1734–9.PubMed Yuan Y, Granger HJ, Zawieja DC, DeFily DV, Chilian WM. Histamine increases venular permeability via a phospholipase C – NO synthase – guanylate cyclase cascade. Am J Physiol. 1993;264:H1734–9.PubMed
9.
go back to reference Shilpi JA, Taufiq-Ur-Rahman M, Uddin SJ, Alam MS, Sadhu SK, Seidel V. Preliminary pharmacological screening of Bixa orellana L. leaves. J Ethnopharmacol. 2006;108:264–71.CrossRefPubMed Shilpi JA, Taufiq-Ur-Rahman M, Uddin SJ, Alam MS, Sadhu SK, Seidel V. Preliminary pharmacological screening of Bixa orellana L. leaves. J Ethnopharmacol. 2006;108:264–71.CrossRefPubMed
10.
go back to reference Braga FG, Bouzada MLM, Fabri RL, Matos MO, Moreira FO, Scio E, et al. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol. 2007;111:396–402.CrossRefPubMed Braga FG, Bouzada MLM, Fabri RL, Matos MO, Moreira FO, Scio E, et al. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol. 2007;111:396–402.CrossRefPubMed
11.
go back to reference Yoke Keong Y, Arifah AK, Sukardi S, Roslida AH, Somchit MN, Zuraini A. Bixa orellana leaves extract inhibit bradykinin-induced inflammation via suppression of nitric oxide production. Med Princ Pract. 2011;20:142–6.CrossRefPubMed Yoke Keong Y, Arifah AK, Sukardi S, Roslida AH, Somchit MN, Zuraini A. Bixa orellana leaves extract inhibit bradykinin-induced inflammation via suppression of nitric oxide production. Med Princ Pract. 2011;20:142–6.CrossRefPubMed
12.
go back to reference Yoke Keong Y, Zainul AZ, Arifah AK, Somchit MN, Cheng Lian GE, Zuraini A. Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complement Altern Med. 2013;13:32.CrossRef Yoke Keong Y, Zainul AZ, Arifah AK, Somchit MN, Cheng Lian GE, Zuraini A. Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complement Altern Med. 2013;13:32.CrossRef
13.
go back to reference Yoke Keong Y, NurShahira S, Nazrul MH, Cheng Lian GE, Zainul AZ, Fauziah O, et al. Suppressions of serotonin-induced increased vascular permeablity and leukocyte infiltration by Bixa orellana leaf extract. Biomed Res Int. 2013;2013:463145. Yoke Keong Y, NurShahira S, Nazrul MH, Cheng Lian GE, Zainul AZ, Fauziah O, et al. Suppressions of serotonin-induced increased vascular permeablity and leukocyte infiltration by Bixa orellana leaf extract. Biomed Res Int. 2013;2013:463145.
14.
go back to reference Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–50.PubMed Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–50.PubMed
15.
go back to reference Chandra A, Angle N. VEGF inhibits PDGF-stimulated calcium signaling independent of phospholipase C and protein kinase C. J Surg Res. 2006;131:302–9.CrossRefPubMed Chandra A, Angle N. VEGF inhibits PDGF-stimulated calcium signaling independent of phospholipase C and protein kinase C. J Surg Res. 2006;131:302–9.CrossRefPubMed
16.
go back to reference Martins-Green M, Petreaca M, Yao M. An assay system for in vitro detection of permeability in human endothelium. Methods Enzymol. 2008;443:137–53.CrossRefPubMed Martins-Green M, Petreaca M, Yao M. An assay system for in vitro detection of permeability in human endothelium. Methods Enzymol. 2008;443:137–53.CrossRefPubMed
17.
go back to reference Shrivastava-Ranjan P, Rollin PE, Spiropoulou CF. Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J Virol. 2010;84:11227–34.CrossRefPubMedPubMedCentral Shrivastava-Ranjan P, Rollin PE, Spiropoulou CF. Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J Virol. 2010;84:11227–34.CrossRefPubMedPubMedCentral
18.
go back to reference Yosef N, Ubogu EE. An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cell Mol Neurobiol. 2013;33:175–86.CrossRefPubMed Yosef N, Ubogu EE. An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cell Mol Neurobiol. 2013;33:175–86.CrossRefPubMed
19.
go back to reference Jutel M, Akdis M, Akdis CA. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy. 2009;39:1786–800.CrossRefPubMed Jutel M, Akdis M, Akdis CA. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy. 2009;39:1786–800.CrossRefPubMed
21.
go back to reference Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB. Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol. 2002;39:173–85.CrossRefPubMed Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB. Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol. 2002;39:173–85.CrossRefPubMed
22.
go back to reference Yamada Y, Furumichi T, Furui H, Yokoi T, Ito T, Yamauchi K, et al. Roles of calcium, cyclic nucleotides, and protein kinase C in regulation of endothelial permeability. Arterioscler Thromb Vasc Biol. 1990;10:410–20.CrossRef Yamada Y, Furumichi T, Furui H, Yokoi T, Ito T, Yamauchi K, et al. Roles of calcium, cyclic nucleotides, and protein kinase C in regulation of endothelial permeability. Arterioscler Thromb Vasc Biol. 1990;10:410–20.CrossRef
23.
go back to reference Sandoval R, Malik AB, Minshall BD, Kouklis P, Ellis CA, Tiruppathi C. Ca2+ signaling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol. 2001;533:433–45.CrossRefPubMedPubMedCentral Sandoval R, Malik AB, Minshall BD, Kouklis P, Ellis CA, Tiruppathi C. Ca2+ signaling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol. 2001;533:433–45.CrossRefPubMedPubMedCentral
24.
go back to reference Wang Z, Ginnan R, Abdullaev IF, Trebak M, Vincent PA, Singer HA. Calcium/calmodulin-dependent protein kinase II delta 6 (CaMKIIδ6) and RhoA involvement in thrombin-induced endothelial barrier dysfunction. J Biol Chem. 2010;285:21303–12.CrossRefPubMedPubMedCentral Wang Z, Ginnan R, Abdullaev IF, Trebak M, Vincent PA, Singer HA. Calcium/calmodulin-dependent protein kinase II delta 6 (CaMKIIδ6) and RhoA involvement in thrombin-induced endothelial barrier dysfunction. J Biol Chem. 2010;285:21303–12.CrossRefPubMedPubMedCentral
25.
go back to reference Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, et al. Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res. 2002;91:70–6.CrossRefPubMed Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, et al. Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res. 2002;91:70–6.CrossRefPubMed
26.
go back to reference Huang Q, Yuan Y. Interaction of PKC and NOS in signal transduction of microvascular hyperpermeability. Am J Physiol. 1997;273:H2442–51.PubMed Huang Q, Yuan Y. Interaction of PKC and NOS in signal transduction of microvascular hyperpermeability. Am J Physiol. 1997;273:H2442–51.PubMed
27.
go back to reference LaI BK, Varma S, Pappas PJ, Hobson RW, Durán WN. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc Res. 2001;62:252–62.CrossRef LaI BK, Varma S, Pappas PJ, Hobson RW, Durán WN. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc Res. 2001;62:252–62.CrossRef
28.
go back to reference Varma S, Breslin JW, Lal BK, Pappas PJ, Hobson RW, Durán WN. P42/22 (MAPK) regulates baseline permeability and cGMP-induced hyperpermeability in endothelial cells. Microvasc Res. 2002;63:172–8.CrossRefPubMed Varma S, Breslin JW, Lal BK, Pappas PJ, Hobson RW, Durán WN. P42/22 (MAPK) regulates baseline permeability and cGMP-induced hyperpermeability in endothelial cells. Microvasc Res. 2002;63:172–8.CrossRefPubMed
29.
go back to reference Breslin JW, Pappas PJ, Cerveira JJ, Hobson RW, Durán WN. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am J Physiol Heart Circ Physiol. 2003;248:H92–100.CrossRef Breslin JW, Pappas PJ, Cerveira JJ, Hobson RW, Durán WN. VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am J Physiol Heart Circ Physiol. 2003;248:H92–100.CrossRef
30.
go back to reference Van Nieuw Amerongen GP, van Hinsbergh VW. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol. 2002;39:257–72.CrossRefPubMed Van Nieuw Amerongen GP, van Hinsbergh VW. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol. 2002;39:257–72.CrossRefPubMed
31.
go back to reference Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest. 2005;115:1666–74.CrossRefPubMedPubMedCentral Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest. 2005;115:1666–74.CrossRefPubMedPubMedCentral
32.
go back to reference Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp Neurol. 2004;190:446–55.CrossRefPubMed Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp Neurol. 2004;190:446–55.CrossRefPubMed
33.
go back to reference Yuan SY. Signal transduction pathways in enhanced microvascular permeability. Microcirculation. 2000;7:395–403.CrossRefPubMed Yuan SY. Signal transduction pathways in enhanced microvascular permeability. Microcirculation. 2000;7:395–403.CrossRefPubMed
34.
go back to reference Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.CrossRefPubMed Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.CrossRefPubMed
35.
go back to reference Murakami T, Frey T, Lin C, Antonetti DA. Protein kinase Cβ phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes. 2012;61:1573–83.CrossRefPubMedPubMedCentral Murakami T, Frey T, Lin C, Antonetti DA. Protein kinase Cβ phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes. 2012;61:1573–83.CrossRefPubMedPubMedCentral
36.
go back to reference Northover AM, Northover BJ. Stimulation of protein kinase C activity may increase microvascular permeability to colloidal carbon via alpha-isoenzyme. Inflammation. 1994;18:481–7.CrossRefPubMed Northover AM, Northover BJ. Stimulation of protein kinase C activity may increase microvascular permeability to colloidal carbon via alpha-isoenzyme. Inflammation. 1994;18:481–7.CrossRefPubMed
37.
go back to reference Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood–brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab. 2010;30:1847–59.CrossRefPubMedPubMedCentral Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood–brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab. 2010;30:1847–59.CrossRefPubMedPubMedCentral
38.
go back to reference Aveleira CA, Lin CM, Abcouwer SF, Ambrósio AF, Antonetti DA. TNF-α signals through PKCζ/NF-kB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59:2872–82.CrossRefPubMedPubMedCentral Aveleira CA, Lin CM, Abcouwer SF, Ambrósio AF, Antonetti DA. TNF-α signals through PKCζ/NF-kB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59:2872–82.CrossRefPubMedPubMedCentral
39.
go back to reference Aramoto H, Breslin JW, Pappas PJ, Hobson II RW, Durán WN. Vascular endothelial growth factor stimulats differential signaling pathways in vivo microcirculation. Am J Physiol Heart Circ Physiol. 2004;287:H1590–8.CrossRefPubMed Aramoto H, Breslin JW, Pappas PJ, Hobson II RW, Durán WN. Vascular endothelial growth factor stimulats differential signaling pathways in vivo microcirculation. Am J Physiol Heart Circ Physiol. 2004;287:H1590–8.CrossRefPubMed
Metadata
Title
Bixa orellana leaf extract suppresses histamine-induced endothelial hyperpermeability via the PLC-NO-cGMP signaling cascade
Authors
Yoke Keong Yong
Hoe Siong Chiong
Muhd Nazrul Somchit
Zuraini Ahmad
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0901-3

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue