Skip to main content
Top
Published in: Pediatric Radiology 12/2017

01-11-2017 | Original Article

Biomechanics of the classic metaphyseal lesion: finite element analysis

Authors: Andy Tsai, Brittany Coats, Paul K. Kleinman

Published in: Pediatric Radiology | Issue 12/2017

Login to get access

Abstract

Background

The classic metaphyseal lesion (CML) is strongly associated with infant abuse, but the biomechanics responsible for this injury have not been rigorously studied. Radiologic and CT-pathological correlates show that the distal tibial CML always involves the cortex near the subperiosteal bone collar, with variable extension of the fracture into the medullary cavity. Therefore, it is reasonable to assume that the primary site of bone failure is cortical, rather than intramedullary.

Objective

This study focuses on the strain patterns generated from finite element modeling to identify loading scenarios and regions of the cortex that are susceptible to bone failure.

Materials and methods

A geometric model was constructed from a normal 3-month-old infant’s distal tibia and fibula. The model’s boundary conditions were set to mimic forceful manipulation of the ankle with eight load modalities (tension, compression, internal rotation, external rotation, dorsiflexion, plantar flexion, valgus bending and varus bending).

Results

For all modalities except internal and external rotation, simulations showed increased cortical strains near the subperiosteal bone collar. Tension generated the largest magnitude of cortical strain (24%) that was uniformly distributed near the subperiosteal bone collar. Compression generated the same distribution of strain but to a lesser magnitude overall (15%). Dorsiflexion and plantar flexion generated high (22%) and moderate (14%) localized cortical strains, respectively, near the subperiosteal bone collar. Lower cortical strains resulted from valgus bending, varus bending, internal rotation and external rotation (8–10%). The highest valgus and varus bending cortical strains occurred medially.

Conclusion

These simulations suggest that the likelihood of the initial cortical bone failure of the CML is higher along the margin of the subperiosteal bone collar when the ankle is under tension, compression, valgus bending, varus bending, dorsiflexion and plantar flexion, but not under internal and external rotation. Focal cortical strains along the medial margins of the subperiosteal bone collar with varus and valgus bending may explain the known tendency for focal distal tibial CMLs to occur medially. Further research is needed to determine the threshold of applied forces required to produce this strong indicator of infant abuse.
Literature
1.
go back to reference Kleinman PK, Perez-Rossello JM, Newton AW et al (2011) Prevalence of the classic metaphyseal lesion in infants at low versus high risk for abuse. AJR Am J Roentgenol 197:1005–1008CrossRefPubMed Kleinman PK, Perez-Rossello JM, Newton AW et al (2011) Prevalence of the classic metaphyseal lesion in infants at low versus high risk for abuse. AJR Am J Roentgenol 197:1005–1008CrossRefPubMed
2.
go back to reference Strouse PJ, Boal DKB (2013) Child abuse. In: Coley BD (ed) Caffey’s pediatric diagnostic imaging. Elsevier, Philadelphia, pp 1587–1598 Strouse PJ, Boal DKB (2013) Child abuse. In: Coley BD (ed) Caffey’s pediatric diagnostic imaging. Elsevier, Philadelphia, pp 1587–1598
3.
go back to reference Flaherty EG, Perez-Rossello JM, Levine MA, Hennrikus WL (2014) Evaluating children with fractures for child physical abuse. Pediatrics 133:e477–e489CrossRefPubMed Flaherty EG, Perez-Rossello JM, Levine MA, Hennrikus WL (2014) Evaluating children with fractures for child physical abuse. Pediatrics 133:e477–e489CrossRefPubMed
4.
go back to reference Servaes S, Brown SD, Choudhary AK et al (2016) The etiology and significance of fractures in infants and young children: a critical multidisciplinary review. Pediatr Radiol 46:591–600CrossRefPubMed Servaes S, Brown SD, Choudhary AK et al (2016) The etiology and significance of fractures in infants and young children: a critical multidisciplinary review. Pediatr Radiol 46:591–600CrossRefPubMed
5.
go back to reference Ruess L, O’Connor SC, Quinn WJ et al (2003) An animal model for the classic metaphyseal lesion of child abuse. Pediatr Radiol 33:S112 Ruess L, O’Connor SC, Quinn WJ et al (2003) An animal model for the classic metaphyseal lesion of child abuse. Pediatr Radiol 33:S112
6.
go back to reference Thackeray JD, Wannemacher J, Adler BH, Lindberg DM (2016) The classic metaphyseal lesion and traumatic injury. Pediatr Radiol 46:1128–1133CrossRefPubMed Thackeray JD, Wannemacher J, Adler BH, Lindberg DM (2016) The classic metaphyseal lesion and traumatic injury. Pediatr Radiol 46:1128–1133CrossRefPubMed
7.
go back to reference Kleinman PL, Zurakowski D, Strauss KJ et al (2008) Detection of simulated inflicted metaphyseal fractures in a fetal pig model: image optimization and dose reduction with computed radiography. Radiology 247:381–390CrossRefPubMed Kleinman PL, Zurakowski D, Strauss KJ et al (2008) Detection of simulated inflicted metaphyseal fractures in a fetal pig model: image optimization and dose reduction with computed radiography. Radiology 247:381–390CrossRefPubMed
8.
go back to reference Thompson A, Bertocci G, Kaczor K et al (2015) Biomechanical investigation of the classic metaphyseal lesion using an immature porcine model. AJR Am J Roentgenol 204:503–509CrossRef Thompson A, Bertocci G, Kaczor K et al (2015) Biomechanical investigation of the classic metaphyseal lesion using an immature porcine model. AJR Am J Roentgenol 204:503–509CrossRef
9.
go back to reference Walsh CJ, Phan CM, Misra M et al (2010) Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT. Radiology 257:167–174CrossRefPubMedPubMedCentral Walsh CJ, Phan CM, Misra M et al (2010) Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT. Radiology 257:167–174CrossRefPubMedPubMedCentral
10.
go back to reference Zhang N, Magland JF, Rajapakse CS et al (2013) Assessment of trabecular bone yield and post-yield behavior from high-resolution MRI-based nonlinear finite element analysis at the distal radius of pre-menopausal and postmenopausal women susceptible to osteoporosis. Acad Radiol 20:1584–1591CrossRefPubMed Zhang N, Magland JF, Rajapakse CS et al (2013) Assessment of trabecular bone yield and post-yield behavior from high-resolution MRI-based nonlinear finite element analysis at the distal radius of pre-menopausal and postmenopausal women susceptible to osteoporosis. Acad Radiol 20:1584–1591CrossRefPubMed
11.
go back to reference Chang G, Honig S, Brown R et al (2014) Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 272:464–474CrossRefPubMedPubMedCentral Chang G, Honig S, Brown R et al (2014) Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 272:464–474CrossRefPubMedPubMedCentral
12.
go back to reference Kleinman PK, Marks S (1996) A regional approach to classic metaphyseal lesions in abused infants: the distal tibia. AJR Am J Roentgenol 166:1207–1212CrossRefPubMed Kleinman PK, Marks S (1996) A regional approach to classic metaphyseal lesions in abused infants: the distal tibia. AJR Am J Roentgenol 166:1207–1212CrossRefPubMed
13.
go back to reference Kleinman PK, Marks S, Blackbourne B (1986) The metaphyseal lesion in abused infants: a radiologic histopathologic study. AJR Am J Roentgenol 146:896–905CrossRef Kleinman PK, Marks S, Blackbourne B (1986) The metaphyseal lesion in abused infants: a radiologic histopathologic study. AJR Am J Roentgenol 146:896–905CrossRef
14.
go back to reference Kleinman PK, Marks S (1995) Relationship of the subperiosteal bone collar to metaphyseal lesions in the abused infants. J Bone Joint Surg 77:1471–1476CrossRefPubMed Kleinman PK, Marks S (1995) Relationship of the subperiosteal bone collar to metaphyseal lesions in the abused infants. J Bone Joint Surg 77:1471–1476CrossRefPubMed
15.
go back to reference Kleinman PK, Marks S, Richmond J, Blackbourne B (1995) Inflicted skeletal injury: a postmortem radiologic-histopathologic study in 31 infants. AJR Am J Roentgenol 165:647–650CrossRefPubMed Kleinman PK, Marks S, Richmond J, Blackbourne B (1995) Inflicted skeletal injury: a postmortem radiologic-histopathologic study in 31 infants. AJR Am J Roentgenol 165:647–650CrossRefPubMed
16.
go back to reference Tsai A, McDonald AG, Rosenberg AE et al (2014) High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse. Pediatr Radiol 44:124–140CrossRefPubMed Tsai A, McDonald AG, Rosenberg AE et al (2014) High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse. Pediatr Radiol 44:124–140CrossRefPubMed
17.
go back to reference Kepron C, Pollanen MS (2015) Rickets or abuse? A histologic comparison of rickets and child abuse-related fractures. Forensic Sci Med Pathol 11:78–87CrossRefPubMed Kepron C, Pollanen MS (2015) Rickets or abuse? A histologic comparison of rickets and child abuse-related fractures. Forensic Sci Med Pathol 11:78–87CrossRefPubMed
18.
go back to reference Kleinman PK, Blackbourne BD, Marks SC et al (1989) Radiologic contributions to the investigation and prosecution of cases of fatal infant abuse. N Engl J Med 320:507–511CrossRefPubMed Kleinman PK, Blackbourne BD, Marks SC et al (1989) Radiologic contributions to the investigation and prosecution of cases of fatal infant abuse. N Engl J Med 320:507–511CrossRefPubMed
19.
go back to reference Hirsch C, Evans FG (1965) Studies on some physical properties of infant compact bone. Acta Orthop Scand 35:300–313CrossRefPubMed Hirsch C, Evans FG (1965) Studies on some physical properties of infant compact bone. Acta Orthop Scand 35:300–313CrossRefPubMed
20.
go back to reference Shahar R, Zaslansky P, Barak M et al (2007) Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry. J Biomech 40:252–264CrossRefPubMed Shahar R, Zaslansky P, Barak M et al (2007) Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry. J Biomech 40:252–264CrossRefPubMed
21.
go back to reference Ding M, Dalstra M, Kabel J et al (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg 79:995–1002CrossRef Ding M, Dalstra M, Kabel J et al (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg 79:995–1002CrossRef
22.
go back to reference Nafei A, Danielsen CC, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Joint Surg (Br) 82:910–920CrossRef Nafei A, Danielsen CC, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Joint Surg (Br) 82:910–920CrossRef
23.
go back to reference Kilborn SH, Trudel G, Uhthoff H (2002) Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim Sci 41:21–26PubMed Kilborn SH, Trudel G, Uhthoff H (2002) Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim Sci 41:21–26PubMed
24.
go back to reference Pearce AI, Richards RG, Milz S et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10CrossRefPubMed Pearce AI, Richards RG, Milz S et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10CrossRefPubMed
25.
go back to reference Ulrich D, van Rietbergen B, Weinans H, Ruegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187–1192CrossRefPubMed Ulrich D, van Rietbergen B, Weinans H, Ruegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187–1192CrossRefPubMed
26.
go back to reference Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate fracture risk and fracture location on human femurs tested in vitro. J Biomech 41:356–367CrossRefPubMed Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate fracture risk and fracture location on human femurs tested in vitro. J Biomech 41:356–367CrossRefPubMed
27.
go back to reference Li X, Viceconti M, Cohen MC et al (2015) Developing CT based computational models of pediatric femurs. J Biomech 48:2034–2040CrossRefPubMed Li X, Viceconti M, Cohen MC et al (2015) Developing CT based computational models of pediatric femurs. J Biomech 48:2034–2040CrossRefPubMed
28.
go back to reference Barber I, Perez-Rossello JM, Wilson CR, Kleinman PK (2015) The yield of high-detail radiographic skeletal surveys in suspected infant abuse. Pediatr Radiol 45:69–80CrossRefPubMed Barber I, Perez-Rossello JM, Wilson CR, Kleinman PK (2015) The yield of high-detail radiographic skeletal surveys in suspected infant abuse. Pediatr Radiol 45:69–80CrossRefPubMed
29.
go back to reference Silverman FN (1953) The roentgen manifestations of unrecognized skeletal trauma in infants. AJR Am J Roentgenol 69:413–427 Silverman FN (1953) The roentgen manifestations of unrecognized skeletal trauma in infants. AJR Am J Roentgenol 69:413–427
30.
go back to reference Caffey J (1957) Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiological features. Br J Radiol 30:225–238CrossRefPubMed Caffey J (1957) Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiological features. Br J Radiol 30:225–238CrossRefPubMed
31.
go back to reference Snedecor ST, Wilson HB (1949) Some obstetrical injuries to the long bones. J Bone Joint Surg 31A:378–384CrossRefPubMed Snedecor ST, Wilson HB (1949) Some obstetrical injuries to the long bones. J Bone Joint Surg 31A:378–384CrossRefPubMed
32.
go back to reference Caffey J (1972) On the theory and practice of shaking infants. Its potential residual effects of permanent brain damage and mental retardation. Am J Dis Child 124:161–169CrossRefPubMed Caffey J (1972) On the theory and practice of shaking infants. Its potential residual effects of permanent brain damage and mental retardation. Am J Dis Child 124:161–169CrossRefPubMed
33.
go back to reference Tsai A, Perez-Rossello J, Breen M, Kleinman P The distal tibial classic metaphyseal lesion: radiographic spatial distribution and biomechanical implications. Pediatr Radiol 47:S157–S158 Tsai A, Perez-Rossello J, Breen M, Kleinman P The distal tibial classic metaphyseal lesion: radiographic spatial distribution and biomechanical implications. Pediatr Radiol 47:S157–S158
34.
go back to reference Helgason B, Perilli E, Schileo E et al (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146CrossRef Helgason B, Perilli E, Schileo E et al (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146CrossRef
Metadata
Title
Biomechanics of the classic metaphyseal lesion: finite element analysis
Authors
Andy Tsai
Brittany Coats
Paul K. Kleinman
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 12/2017
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-017-3921-y

Other articles of this Issue 12/2017

Pediatric Radiology 12/2017 Go to the issue