Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2014

Open Access 01-12-2014 | Research article

Biomechanical testing of a unique built-in expandable anterior spinal internal fixation system

Authors: Chu-Song Zhou, Yan-Fang Xu, Yu Zhang, Zhong Chen, Hai Lv

Published in: BMC Musculoskeletal Disorders | Issue 1/2014

Login to get access

Abstract

Background

Expandable screws have greater pullout strength than conventional screws. The purpose of this study was to compare the biomechanical stability provided by a new built-in expandable anterior spinal fixation system with that of 2 commonly used anterior fixation systems, the Z-Plate and the Kaneda, in a porcine partial vertebral corpectomy model.

Methods

Eighteen porcine thoracolumbar spine specimens were randomly divided into 3 groups of 6 each. A vertebral wedge osteotomy was performed by removing the anterior 2/3 of the L1 vertebral body and the T15/L1 disc. Vertebrae were fixed with the Z-Plate, Kaneda, or expandable fixation system. The 3-dimensional spinal range of motion (ROM) of specimens in the intact state (prior to osteotomy), injured state (after osteotomy), and after internal fixation were recorded. The pullout strength and maximum torque of common anterior screws, the expandable anterior fixation screw unexpanded, and the expandable anterior fixation screw expanded was tested.

Results

After internal fixation, the expandable device and Z-plate system exhibited higher left bending motion than the Kaneda system (5.50° and 5.37° vs. 5.04, p = 0.001 and 0.008, respectively), and the Z-plate and Kaneda groups had significantly higher left axial and right axial rotation ROM as compared to the expandable device group (left axial rotation: 5.23° and 5.02° vs. 4.53°; right axial rotation: 5.23° and 5.08° vs. 4.49°). The maximum insertion torque of the expandable device was significantly greater than of a common screw (5.10 vs. 3.75 Ns). The maximum pullout force of the expandable device expanded was significantly higher than that of the common screw and the expandable device unexpanded (3,035.48 N vs. 1,827.38 N and 2,333.49 N).

Conclusions

The built-in anterior fixation system provides better axial rotational stability as compared to the other 2 systems, and greater maximum torque and pullout strength than a common fixation screw.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allain J: Anterior spine surgery in recent thoracolumbar fractures: An update. Orthop Traumatol Sury Res. 2011, 97: 541-554. 10.1016/j.otsr.2011.06.003.CrossRef Allain J: Anterior spine surgery in recent thoracolumbar fractures: An update. Orthop Traumatol Sury Res. 2011, 97: 541-554. 10.1016/j.otsr.2011.06.003.CrossRef
2.
go back to reference Mobbs RJ, Loganathan A, Yeung V, Rao PJ: Indications for anterior lumbar interbody fusion. Orthop Surg. 2013, 5: 153-163. 10.1111/os.12048.CrossRefPubMed Mobbs RJ, Loganathan A, Yeung V, Rao PJ: Indications for anterior lumbar interbody fusion. Orthop Surg. 2013, 5: 153-163. 10.1111/os.12048.CrossRefPubMed
3.
go back to reference Schramm M, Krummbein S, Kraus H, Hirschfelder H, Pitto RP: [The MACS-HMA hollow screw. An alternative possibility for stable implant anchoring in the vertebral body also for long fusions]. Orthopade. 2002, 31: 494-502. 10.1007/s00132-001-0291-8. [Article in German]CrossRefPubMed Schramm M, Krummbein S, Kraus H, Hirschfelder H, Pitto RP: [The MACS-HMA hollow screw. An alternative possibility for stable implant anchoring in the vertebral body also for long fusions]. Orthopade. 2002, 31: 494-502. 10.1007/s00132-001-0291-8. [Article in German]CrossRefPubMed
4.
go back to reference Keerthi I, Dhillon CS, Shetty MB: Late-onset bowel perforation and iliac artery erosion after prominent anterior spinal instrumentation. Spine (Phila Pa 1976). 2012, 37: E1402-E1405. 10.1097/BRS.0b013e318267f813.CrossRef Keerthi I, Dhillon CS, Shetty MB: Late-onset bowel perforation and iliac artery erosion after prominent anterior spinal instrumentation. Spine (Phila Pa 1976). 2012, 37: E1402-E1405. 10.1097/BRS.0b013e318267f813.CrossRef
5.
go back to reference Huang HY, Ou YL, Li PY, Zhang T, Chen S, Shen HY, Wang Q, Zheng XF: Biomechanics of single-tunnel double-bundle anterior cruciate ligament reconstruction using fixation with a unique expandable interference screw. Knee. 2013, pii: S0968-0160(13)00209-3-doi:10.1016/j.knee.2013.10.014. [Epub ahead of print] Huang HY, Ou YL, Li PY, Zhang T, Chen S, Shen HY, Wang Q, Zheng XF: Biomechanics of single-tunnel double-bundle anterior cruciate ligament reconstruction using fixation with a unique expandable interference screw. Knee. 2013, pii: S0968-0160(13)00209-3-doi:10.1016/j.knee.2013.10.014. [Epub ahead of print]
6.
go back to reference Richter M, Wilke HJ, Kluger P, Claes L, Puhl W: Biomechanical evaluation of a newly developed monocortical expansion screw for use in anterior internal fixation of the cervical spine. In vitro comparison with two established internal fixation systems. Spine. 1999, 24: 207-212. 10.1097/00007632-199902010-00002.CrossRefPubMed Richter M, Wilke HJ, Kluger P, Claes L, Puhl W: Biomechanical evaluation of a newly developed monocortical expansion screw for use in anterior internal fixation of the cervical spine. In vitro comparison with two established internal fixation systems. Spine. 1999, 24: 207-212. 10.1097/00007632-199902010-00002.CrossRefPubMed
7.
go back to reference Gazzeri R, Roperto R, Fiore C: Titanium expandable pedicle screw for the treatment of degenerative and traumatic spinal diseases in osteoporotic patients: preliminary experience. Surg Technol Int. 2012, 22: 320-325.PubMed Gazzeri R, Roperto R, Fiore C: Titanium expandable pedicle screw for the treatment of degenerative and traumatic spinal diseases in osteoporotic patients: preliminary experience. Surg Technol Int. 2012, 22: 320-325.PubMed
8.
go back to reference Wu ZX, Gong FT, Liu L, Ma ZS, Zhang Y, Zhao X, Yang M, Lei W, Sang HX: A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg. 2012, 132: 471-476. 10.1007/s00402-011-1439-6.CrossRefPubMed Wu ZX, Gong FT, Liu L, Ma ZS, Zhang Y, Zhao X, Yang M, Lei W, Sang HX: A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg. 2012, 132: 471-476. 10.1007/s00402-011-1439-6.CrossRefPubMed
9.
go back to reference Vishnubhotla S, McGarry WB, Mahar AT, Gelb DE: A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Spine J. 2011, 11: 777-781. 10.1016/j.spinee.2011.06.006.CrossRefPubMed Vishnubhotla S, McGarry WB, Mahar AT, Gelb DE: A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Spine J. 2011, 11: 777-781. 10.1016/j.spinee.2011.06.006.CrossRefPubMed
10.
go back to reference Wilke HJ, Krischak S, Claes LE: Formalin fixation strongly influences biomechanical properties of the spine. J Biomech. 1996, 29: 1629-1631. 10.1016/S0021-9290(96)80016-9.CrossRefPubMed Wilke HJ, Krischak S, Claes LE: Formalin fixation strongly influences biomechanical properties of the spine. J Biomech. 1996, 29: 1629-1631. 10.1016/S0021-9290(96)80016-9.CrossRefPubMed
11.
go back to reference Panjabi MM, Krag M, Summers D, Videman T: Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res. 1985, 3: 292-300. 10.1002/jor.1100030305.CrossRefPubMed Panjabi MM, Krag M, Summers D, Videman T: Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res. 1985, 3: 292-300. 10.1002/jor.1100030305.CrossRefPubMed
12.
go back to reference Panjabi MM, White AA: Clinical Biomechanics of the Spine. 1990, Philadelphia: Lippincott JB, 191-196. 4 Panjabi MM, White AA: Clinical Biomechanics of the Spine. 1990, Philadelphia: Lippincott JB, 191-196. 4
13.
go back to reference Wilke H, Wenger K, Claes L: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 1998, 7: 148-154. 10.1007/s005860050045.CrossRefPubMedPubMedCentral Wilke H, Wenger K, Claes L: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J. 1998, 7: 148-154. 10.1007/s005860050045.CrossRefPubMedPubMedCentral
14.
go back to reference Crawford NR, Brantley AG, Dickman CA, Koeneman EJ: An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine. 1995, 20: 2097-10.1097/00007632-199510000-00005.CrossRefPubMed Crawford NR, Brantley AG, Dickman CA, Koeneman EJ: An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine. 1995, 20: 2097-10.1097/00007632-199510000-00005.CrossRefPubMed
15.
go back to reference Panjabi MM: The stabilizing system of the spine. II. Neutral zone and instability hypothesis. J Spinal Disord. 1992, 5: 390-397. 10.1097/00002517-199212000-00002.CrossRefPubMed Panjabi MM: The stabilizing system of the spine. II. Neutral zone and instability hypothesis. J Spinal Disord. 1992, 5: 390-397. 10.1097/00002517-199212000-00002.CrossRefPubMed
16.
go back to reference Kocis J, Navrat T, Florian Z, Wendsche P: Biomechanical testing of spinal segment fixed by thoracolumbar spine locking plate on the swine lumbar spine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010, 154: 345-354. 10.5507/bp.2010.052.CrossRefPubMed Kocis J, Navrat T, Florian Z, Wendsche P: Biomechanical testing of spinal segment fixed by thoracolumbar spine locking plate on the swine lumbar spine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010, 154: 345-354. 10.5507/bp.2010.052.CrossRefPubMed
17.
go back to reference Zdeblick T: A prospective, randomized study of lumbar fusion. Preliminary results. Spine. 1993, 18: 983-991. 10.1097/00007632-199306150-00006.CrossRefPubMed Zdeblick T: A prospective, randomized study of lumbar fusion. Preliminary results. Spine. 1993, 18: 983-991. 10.1097/00007632-199306150-00006.CrossRefPubMed
18.
go back to reference Brodke DS, Gollogly S, Bachus KN, Alexander Mohr R, Nguyen BK: Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine (Phila Pa 1976). 2003, 28: 1794-1801. 10.1097/01.BRS.0000083201.55495.0E.CrossRef Brodke DS, Gollogly S, Bachus KN, Alexander Mohr R, Nguyen BK: Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine (Phila Pa 1976). 2003, 28: 1794-1801. 10.1097/01.BRS.0000083201.55495.0E.CrossRef
19.
go back to reference Oda I, Cunningham BW, Lee GA, Abumi K, Kaneda K, McAfee PC: Biomechanical properties of anterior thoracolumbar multisegmental fixation: an analysis of construct stiffness and screw-rod strain. Spine. 2000, 25: 2303-2311. 10.1097/00007632-200009150-00007.CrossRefPubMed Oda I, Cunningham BW, Lee GA, Abumi K, Kaneda K, McAfee PC: Biomechanical properties of anterior thoracolumbar multisegmental fixation: an analysis of construct stiffness and screw-rod strain. Spine. 2000, 25: 2303-2311. 10.1097/00007632-200009150-00007.CrossRefPubMed
20.
go back to reference Seller K, Wahl D, Wild A, Krauspe R, Schneider E, Linke B: Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies. Eur Spine J. 2007, 16: 1047-1054. 10.1007/s00586-007-0307-0.CrossRefPubMedPubMedCentral Seller K, Wahl D, Wild A, Krauspe R, Schneider E, Linke B: Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies. Eur Spine J. 2007, 16: 1047-1054. 10.1007/s00586-007-0307-0.CrossRefPubMedPubMedCentral
21.
go back to reference Liu J, Cheng L, Fang D, Han D: Inquiry into screw breakage and curved or loose of vertebra arched root after operation in fracture of thoracic and abdominal vertebrae segment. Orthop J China. 2001, 8: 710-711. Liu J, Cheng L, Fang D, Han D: Inquiry into screw breakage and curved or loose of vertebra arched root after operation in fracture of thoracic and abdominal vertebrae segment. Orthop J China. 2001, 8: 710-711.
22.
go back to reference Willett K, Hearn TC, Cuncins AV: Biomechanical testing of a new design for Schanz pedicle screws. J Orthop Trauma. 1993, 7: 375-380. 10.1097/00005131-199308000-00015.CrossRefPubMed Willett K, Hearn TC, Cuncins AV: Biomechanical testing of a new design for Schanz pedicle screws. J Orthop Trauma. 1993, 7: 375-380. 10.1097/00005131-199308000-00015.CrossRefPubMed
23.
go back to reference Leong JC, Lu WW, Zheng Y, Zhu Q, Zhong S: Comparison of the strengths of lumbosacral fixation achieved with techniques using one and two triangulated sacral screws. Spine. 1998, 23: 2289-2294. 10.1097/00007632-199811010-00008.CrossRefPubMed Leong JC, Lu WW, Zheng Y, Zhu Q, Zhong S: Comparison of the strengths of lumbosacral fixation achieved with techniques using one and two triangulated sacral screws. Spine. 1998, 23: 2289-2294. 10.1097/00007632-199811010-00008.CrossRefPubMed
24.
go back to reference Polly DW, Orchowski JR, Ellenbogen RG: Revision pedicle screws. Bigger, longer shims-what is best?. Spine. 1998, 23: 1374-1379. 10.1097/00007632-199806150-00015.CrossRefPubMed Polly DW, Orchowski JR, Ellenbogen RG: Revision pedicle screws. Bigger, longer shims-what is best?. Spine. 1998, 23: 1374-1379. 10.1097/00007632-199806150-00015.CrossRefPubMed
25.
go back to reference Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL: An internal fixator for posterior application to short segments of the thoracic, lunbar, or lumbosacral spine. Design and testing. Clin Orthop Relat Res. 1986, 203: 75-98.PubMed Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL: An internal fixator for posterior application to short segments of the thoracic, lunbar, or lumbosacral spine. Design and testing. Clin Orthop Relat Res. 1986, 203: 75-98.PubMed
26.
go back to reference Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H: Stability of transpedicle screwing for the osteoporotic spine: an in vitro study of the mechanical stability. Spine. 1993, 18: 2240-2245. 10.1097/00007632-199311000-00016.CrossRefPubMed Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H: Stability of transpedicle screwing for the osteoporotic spine: an in vitro study of the mechanical stability. Spine. 1993, 18: 2240-2245. 10.1097/00007632-199311000-00016.CrossRefPubMed
27.
go back to reference Li Z, Zhang Z, Wang J: Mechanics studies on the biological effects of pedicle screws in the bone mineral density. Chin J Orthop. 1998, 18: 293-297. Li Z, Zhang Z, Wang J: Mechanics studies on the biological effects of pedicle screws in the bone mineral density. Chin J Orthop. 1998, 18: 293-297.
28.
go back to reference Yamagata M, Kitahara H, Minami S, Takahashi K, Isobe K, Moriya H, Tamaki T: Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine. 1992, 17: 51-54.CrossRef Yamagata M, Kitahara H, Minami S, Takahashi K, Isobe K, Moriya H, Tamaki T: Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine. 1992, 17: 51-54.CrossRef
29.
go back to reference Cook D, Salkeld L, Whitecloud S, Barbera J: Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord. 2000, 13: 230-236. 10.1097/00002517-200006000-00006.CrossRefPubMed Cook D, Salkeld L, Whitecloud S, Barbera J: Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord. 2000, 13: 230-236. 10.1097/00002517-200006000-00006.CrossRefPubMed
Metadata
Title
Biomechanical testing of a unique built-in expandable anterior spinal internal fixation system
Authors
Chu-Song Zhou
Yan-Fang Xu
Yu Zhang
Zhong Chen
Hai Lv
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2014
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-15-424

Other articles of this Issue 1/2014

BMC Musculoskeletal Disorders 1/2014 Go to the issue