Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis

Authors: Giuseppe Salvatore, Alessandra Berton, Hugo Giambini, Mauro Ciuffreda, Pino Florio, Umile Giuseppe Longo, Vincenzo Denaro, Andrew Thoreson, Kai-Nan An

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

Cancer patients are likely to undergo osteoporosis as consequence of hormone manipulation and/or chemotherapy. Little is known about possible increased risk of fracture in this population. The aim of this study was to describe the biomechanical effect of a metastatic lesion in an osteoporotic lumbar spine model.

Methods

A finite element model of two spinal motion segments (L3-L5) was extracted from a previously developed L3-Sacrum model and used to analyze the effect of metastasis size and bone mineral density (BMD) on Vertebral bulge (VB) and Vertebral height (VH). VB and VH represent respectively radial and axial displacement and they have been correlated to burst fracture. A total of 6 scenarios were evaluated combining three metastasis sizes (no metastasis, 15% and 30% of the vertebral body) and two BMD conditions (normal BMD and osteoporosis).

Results

15% metastasis increased VB and VH by 178% and 248%, respectively in normal BMD model; while VB and VH increased by 134% and 174% in osteoporotic model. 30% metastasis increased VB and VH by 88% and 109%, respectively, when compared to 15% metastasis in normal BMD model; while VB and VH increased by 59% and 74% in osteoporotic model.

Conclusion

A metastasis in the osteoporotic lumbar spine always leads to a higher risk of vertebral fracture. This risk increases with the size of the metastasis. Unexpectedly, an increment in metastasis size in the normal BMD spine produces a greater impact on vertebral stability compared to the osteoporotic spine.
Literature
1.
go back to reference Aaron AD. The management of cancer metastatic to bone. JAMA : the journal of the American Medical Association. 1994;272(15):1206–9.CrossRefPubMed Aaron AD. The management of cancer metastatic to bone. JAMA : the journal of the American Medical Association. 1994;272(15):1206–9.CrossRefPubMed
2.
go back to reference Ohmori K, Matsui H, Yasuda T, Kanamori M, Yudoh K, Seto H, Tsuji H. Evaluation of the prognosis of cancer patients with metastatic bone tumors based on serial bone scintigrams. Jpn J Clin Oncol. 1997;27(4):263–7.CrossRefPubMed Ohmori K, Matsui H, Yasuda T, Kanamori M, Yudoh K, Seto H, Tsuji H. Evaluation of the prognosis of cancer patients with metastatic bone tumors based on serial bone scintigrams. Jpn J Clin Oncol. 1997;27(4):263–7.CrossRefPubMed
3.
go back to reference Hortobagyi GN, Theriault RL, Lipton A, Porter L, Blayney D, Sinoff C, Wheeler H, Simeone JF, Seaman JJ, Knight RD, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia breast cancer study group. J Clin Oncol. 1998;16(6):2038–44.CrossRefPubMed Hortobagyi GN, Theriault RL, Lipton A, Porter L, Blayney D, Sinoff C, Wheeler H, Simeone JF, Seaman JJ, Knight RD, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia breast cancer study group. J Clin Oncol. 1998;16(6):2038–44.CrossRefPubMed
4.
go back to reference Hortobagyi GN. The status of breast cancer management: challenges and opportunities. Breast Cancer Res Treat. 2002;75(Suppl 1):S61–5. discussion S57–69CrossRefPubMed Hortobagyi GN. The status of breast cancer management: challenges and opportunities. Breast Cancer Res Treat. 2002;75(Suppl 1):S61–5. discussion S57–69CrossRefPubMed
5.
go back to reference Hipp JA, Springfield DS, Hayes WC. Predicting pathologic fracture risk in the management of metastatic bone defects. Clin Orthop Relat Res. 1995;312:120–35. Hipp JA, Springfield DS, Hayes WC. Predicting pathologic fracture risk in the management of metastatic bone defects. Clin Orthop Relat Res. 1995;312:120–35.
6.
go back to reference Mincey BA, Moraghan TJ, Perez EA. Prevention and treatment of osteoporosis in women with breast cancer. Mayo Clinic proceedings Mayo Clinic. 2000;75(8):821–9.CrossRef Mincey BA, Moraghan TJ, Perez EA. Prevention and treatment of osteoporosis in women with breast cancer. Mayo Clinic proceedings Mayo Clinic. 2000;75(8):821–9.CrossRef
7.
go back to reference Snyder BD, Cordio MA, Nazarian A, Kwak SD, Chang DJ, Entezari V, Zurakowski D, Parker LM. Noninvasive prediction of fracture risk in patients with metastatic cancer to the spine. Clin Cancer Res. 2009;15(24):7676–83.CrossRefPubMed Snyder BD, Cordio MA, Nazarian A, Kwak SD, Chang DJ, Entezari V, Zurakowski D, Parker LM. Noninvasive prediction of fracture risk in patients with metastatic cancer to the spine. Clin Cancer Res. 2009;15(24):7676–83.CrossRefPubMed
8.
go back to reference Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16.CrossRefPubMedPubMedCentral Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16.CrossRefPubMedPubMedCentral
9.
go back to reference Morgan SL, Lopez-Ben R, Nunnally N, Burroughs L, Desmond R. Nonprogression of vertebral area or bone mineral content on DXA does not predict compression fractures. J Clin Densitom. 2006;9(3):261–4.CrossRefPubMed Morgan SL, Lopez-Ben R, Nunnally N, Burroughs L, Desmond R. Nonprogression of vertebral area or bone mineral content on DXA does not predict compression fractures. J Clin Densitom. 2006;9(3):261–4.CrossRefPubMed
10.
go back to reference Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86.CrossRefPubMed Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86.CrossRefPubMed
11.
go back to reference Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the Management of Osteoporosis in adults: the 2015 ISCD official positions-part II. J Clin Densitom. 2015;18(3):359–92.CrossRefPubMed Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the Management of Osteoporosis in adults: the 2015 ISCD official positions-part II. J Clin Densitom. 2015;18(3):359–92.CrossRefPubMed
12.
go back to reference Whyne CM. Biomechanics of metastatic disease in the vertebral column. Neurol Res. 2014;36(6):493–501.CrossRefPubMed Whyne CM. Biomechanics of metastatic disease in the vertebral column. Neurol Res. 2014;36(6):493–501.CrossRefPubMed
13.
go back to reference Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine. 2003;28(7):652–60.PubMed Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine. 2003;28(7):652–60.PubMed
14.
go back to reference Windhagen HJ, Hipp JA, Silva MJ, Lipson SJ, Hayes WC. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin Orthop Relat Res. 1997;344:313-319.CrossRef Windhagen HJ, Hipp JA, Silva MJ, Lipson SJ, Hayes WC. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin Orthop Relat Res. 1997;344:313-319.CrossRef
15.
go back to reference Dimar JR 2nd, Voor MJ, Zhang YM, Glassman SD. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine. 1998;23(11):1209–14.CrossRefPubMed Dimar JR 2nd, Voor MJ, Zhang YM, Glassman SD. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine. 1998;23(11):1209–14.CrossRefPubMed
16.
go back to reference McGowan DP, Hipp JA, Takeuchi T, White AA 3rd, Hayes WC. Strength reductions from trabecular destruction within thoracic vertebrae. J Spinal Disord. 1993;6(2):130-136.CrossRef McGowan DP, Hipp JA, Takeuchi T, White AA 3rd, Hayes WC. Strength reductions from trabecular destruction within thoracic vertebrae. J Spinal Disord. 1993;6(2):130-136.CrossRef
17.
go back to reference Huiskes R, Hollister SJ. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J Biomech Eng. 1993;115(4B):520–7.CrossRefPubMed Huiskes R, Hollister SJ. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J Biomech Eng. 1993;115(4B):520–7.CrossRefPubMed
18.
go back to reference Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models: part I--linear analysis. J Biomech Eng. 1991;113(4):353–60.CrossRefPubMed Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models: part I--linear analysis. J Biomech Eng. 1991;113(4):353–60.CrossRefPubMed
19.
go back to reference Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine. 2014;39(22):E1291–6.CrossRefPubMedPubMedCentral Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine. 2014;39(22):E1291–6.CrossRefPubMedPubMedCentral
20.
go back to reference Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains. Eur J Morphol. 2005;42(1–2):13–21.CrossRefPubMed Morgan EF, Yeh OC, Keaveny TM. Damage in trabecular bone at small strains. Eur J Morphol. 2005;42(1–2):13–21.CrossRefPubMed
21.
go back to reference Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A, Keaveny TM. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413–20.CrossRefPubMed Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A, Keaveny TM. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413–20.CrossRefPubMed
22.
go back to reference Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.CrossRefPubMed Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.CrossRefPubMed
23.
go back to reference Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307–33.CrossRefPubMed Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307–33.CrossRefPubMed
24.
go back to reference Amin S, Kopperdhal DL, Melton LJ 3rd, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 2011;26(7):1593–600.CrossRefPubMedPubMedCentral Amin S, Kopperdhal DL, Melton LJ 3rd, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 2011;26(7):1593–600.CrossRefPubMedPubMedCentral
25.
go back to reference Ellingson AM, Shaw MN, Giambini H, An KN. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Comput Methods Biomech Biomed Engin. 2015:1–10. Ellingson AM, Shaw MN, Giambini H, An KN. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Comput Methods Biomech Biomed Engin. 2015:1–10.
26.
go back to reference Viceconti M, Olsen S, Nolte LP, Burton K. Extracting clinically relevant data from finite element simulations. Clin Biomech. 2005;20(5):451–4.CrossRef Viceconti M, Olsen S, Nolte LP, Burton K. Extracting clinically relevant data from finite element simulations. Clin Biomech. 2005;20(5):451–4.CrossRef
27.
go back to reference Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 1995;20(6):689–98.CrossRefPubMed Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 1995;20(6):689–98.CrossRefPubMed
28.
go back to reference White AAPM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: JB Lippincott; 1990. White AAPM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: JB Lippincott; 1990.
29.
go back to reference Shirazi-Adl A, Ahmed AM, Shrivastava SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech. 1986;19(4):331–50.CrossRefPubMed Shirazi-Adl A, Ahmed AM, Shrivastava SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech. 1986;19(4):331–50.CrossRefPubMed
30.
go back to reference Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine. 2007;32(7):748–55.CrossRefPubMed Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine. 2007;32(7):748–55.CrossRefPubMed
31.
go back to reference Corp. DSS (ed.): Abaqus Analysis User's Manual. Providence, RI.; 2008 a. Corp. DSS (ed.): Abaqus Analysis User's Manual. Providence, RI.; 2008 a.
32.
go back to reference Schultz A, Andersson G, Ortengren R, Haderspeck K, Nachemson A. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am. 1982;64(5):713–20.CrossRefPubMed Schultz A, Andersson G, Ortengren R, Haderspeck K, Nachemson A. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am. 1982;64(5):713–20.CrossRefPubMed
33.
go back to reference Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 2003;28(10):991–6.PubMed Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 2003;28(10):991–6.PubMed
34.
go back to reference Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine. 1997;22(3):239–45.CrossRefPubMed Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine. 1997;22(3):239–45.CrossRefPubMed
35.
go back to reference Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V. Conservative management of patients with an osteoporotic vertebral fracture: a review of the literature. J Bone Joint Surg Br. 2012;94(2):152–7.CrossRefPubMed Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V. Conservative management of patients with an osteoporotic vertebral fracture: a review of the literature. J Bone Joint Surg Br. 2012;94(2):152–7.CrossRefPubMed
36.
go back to reference Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V. Osteoporotic vertebral fractures: current concepts of conservative care. Br Med Bull. 2012;102:171–89.CrossRefPubMed Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V. Osteoporotic vertebral fractures: current concepts of conservative care. Br Med Bull. 2012;102:171–89.CrossRefPubMed
37.
go back to reference Denaro V, Longo UG, Denaro L. Vertebroplasty versus conservative treatment for vertebral fractures. Lancet. 2010;376(9758):2071. author reply 2071-2072CrossRefPubMed Denaro V, Longo UG, Denaro L. Vertebroplasty versus conservative treatment for vertebral fractures. Lancet. 2010;376(9758):2071. author reply 2071-2072CrossRefPubMed
38.
go back to reference Longo UG, Denaro L, Campi S, Maffulli N, Denaro V. Upper cervical spine injuries: indications and limits of the conservative management in halo vest. A systematic review of efficacy and safety. Injury. 2010;41(11):1127–35.CrossRefPubMed Longo UG, Denaro L, Campi S, Maffulli N, Denaro V. Upper cervical spine injuries: indications and limits of the conservative management in halo vest. A systematic review of efficacy and safety. Injury. 2010;41(11):1127–35.CrossRefPubMed
39.
go back to reference Denaro L, Longo UG, Denaro V. Vertebroplasty and kyphoplasty: reasons for concern? Orthop Clin North Am. 2009;40(4):465–71. viiiCrossRefPubMed Denaro L, Longo UG, Denaro V. Vertebroplasty and kyphoplasty: reasons for concern? Orthop Clin North Am. 2009;40(4):465–71. viiiCrossRefPubMed
40.
go back to reference Denaro V, Longo UG, Maffulli N, Denaro L. Vertebroplasty and kyphoplasty. Clin Cases Miner Bone Metab. 2009;6(2):125–30.PubMed Denaro V, Longo UG, Maffulli N, Denaro L. Vertebroplasty and kyphoplasty. Clin Cases Miner Bone Metab. 2009;6(2):125–30.PubMed
41.
go back to reference Tschirhart CE, Nagpurkar A, Whyne CM. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J Biomech. 2004;37(5):653–60.CrossRefPubMed Tschirhart CE, Nagpurkar A, Whyne CM. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J Biomech. 2004;37(5):653–60.CrossRefPubMed
42.
go back to reference Longo UG, Denaro V. Spinal augmentation: what have we learnt? Lancet. 2009;373(9679):1947. author reply 1947-1948CrossRefPubMed Longo UG, Denaro V. Spinal augmentation: what have we learnt? Lancet. 2009;373(9679):1947. author reply 1947-1948CrossRefPubMed
43.
go back to reference Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29(3):570–80.CrossRefPubMedPubMedCentral Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29(3):570–80.CrossRefPubMedPubMedCentral
44.
go back to reference Anderson DE, Demissie S, Allaire BT, Bruno AG, Kopperdahl DL, Keaveny TM, Kiel DP, Bouxsein ML. The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture. Osteoporos Int. 2014;25(2):559–66.CrossRefPubMed Anderson DE, Demissie S, Allaire BT, Bruno AG, Kopperdahl DL, Keaveny TM, Kiel DP, Bouxsein ML. The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture. Osteoporos Int. 2014;25(2):559–66.CrossRefPubMed
45.
go back to reference Fields AJ, Keaveny TM. Trabecular architecture and vertebral fragility in osteoporosis. Curr Osteoporos Rep. 2012;10(2):132–40.CrossRefPubMed Fields AJ, Keaveny TM. Trabecular architecture and vertebral fragility in osteoporosis. Curr Osteoporos Rep. 2012;10(2):132–40.CrossRefPubMed
46.
go back to reference Nazarian A, von Stechow D, Zurakowski D, Muller R, Snyder BD. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tissue Int. 2008;83(6):368–79.CrossRefPubMed Nazarian A, von Stechow D, Zurakowski D, Muller R, Snyder BD. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tissue Int. 2008;83(6):368–79.CrossRefPubMed
47.
go back to reference Snyder BD, Piazza S, Edwards WT, Hayes WC. Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int. 1993;53(Suppl 1):S14–22.CrossRefPubMed Snyder BD, Piazza S, Edwards WT, Hayes WC. Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int. 1993;53(Suppl 1):S14–22.CrossRefPubMed
48.
go back to reference Whyne CM, Hu SS, Lotz JC. Parametric finite element analysis of vertebral bodies affected by tumors. J Biomech. 2001;34(10):1317–24.CrossRefPubMed Whyne CM, Hu SS, Lotz JC. Parametric finite element analysis of vertebral bodies affected by tumors. J Biomech. 2001;34(10):1317–24.CrossRefPubMed
49.
go back to reference Whyne CM, Hu SS, Lotz JC. Biomechanically derived guideline equations for burst fracture risk prediction in the metastatically involved spine. J Spinal Disord Tech. 2003;16(2):180–5.CrossRefPubMed Whyne CM, Hu SS, Lotz JC. Biomechanically derived guideline equations for burst fracture risk prediction in the metastatically involved spine. J Spinal Disord Tech. 2003;16(2):180–5.CrossRefPubMed
50.
go back to reference Whyne CM, Hu SS, Klisch S, Lotz JC. Effect of the pedicle and posterior arch on vertebral body strength predictions in finite element modeling. Spine. 1998;23(8):899–907.CrossRefPubMed Whyne CM, Hu SS, Klisch S, Lotz JC. Effect of the pedicle and posterior arch on vertebral body strength predictions in finite element modeling. Spine. 1998;23(8):899–907.CrossRefPubMed
51.
go back to reference Tschirhart CE, Finkelstein JA, Whyne CM. Metastatic burst fracture risk assessment based on complex loading of the thoracic spine. Ann Biomed Eng. 2006;34(3):494–505.CrossRefPubMed Tschirhart CE, Finkelstein JA, Whyne CM. Metastatic burst fracture risk assessment based on complex loading of the thoracic spine. Ann Biomed Eng. 2006;34(3):494–505.CrossRefPubMed
52.
go back to reference Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech. 2007;40(1):46–54.CrossRefPubMed Tschirhart CE, Finkelstein JA, Whyne CM. Biomechanics of vertebral level, geometry, and transcortical tumors in the metastatic spine. J Biomech. 2007;40(1):46–54.CrossRefPubMed
53.
go back to reference Sone T, Tamada T, Jo Y, Miyoshi H, Fukunaga M. Analysis of three-dimensional microarchitecture and degree of mineralization in bone metastases from prostate cancer using synchrotron microcomputed tomography. Bone. 2004;35(2):432–8.CrossRefPubMed Sone T, Tamada T, Jo Y, Miyoshi H, Fukunaga M. Analysis of three-dimensional microarchitecture and degree of mineralization in bone metastases from prostate cancer using synchrotron microcomputed tomography. Bone. 2004;35(2):432–8.CrossRefPubMed
54.
go back to reference Burr DB. The contribution of the organic matrix to bone's material properties. Bone. 2002;31(1):8–11.CrossRefPubMed Burr DB. The contribution of the organic matrix to bone's material properties. Bone. 2002;31(1):8–11.CrossRefPubMed
55.
go back to reference Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2(1):1–11.CrossRefPubMed Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2(1):1–11.CrossRefPubMed
56.
go back to reference Currey JD. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J Biomech. 1988;21(2):131–9.CrossRefPubMed Currey JD. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J Biomech. 1988;21(2):131–9.CrossRefPubMed
Metadata
Title
Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis
Authors
Giuseppe Salvatore
Alessandra Berton
Hugo Giambini
Mauro Ciuffreda
Pino Florio
Umile Giuseppe Longo
Vincenzo Denaro
Andrew Thoreson
Kai-Nan An
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-1953-6

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue