Skip to main content
Top
Published in: Journal of Natural Medicines 2/2009

01-04-2009 | Original Paper

Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds

Authors: Lars P. Christensen, Martin Jensen

Published in: Journal of Natural Medicines | Issue 2/2009

Login to get access

Abstract

Fifty selected roots from a 7-year-old American ginseng (Panax quinquefolium L.) plant population grown in Denmark, with root weights varying from 191 to 490 g fresh weight (FW), were investigated for bioactive ginsenosides and polyacetylenes (PAs) in order to determine the correlation between the content of ginsenosides and PAs and root FW. PAs (falcarinol, panaxydol) and ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1) were extracted from roots by sequential extraction with ethyl acetate and 80% methanol, respectively, and quantified in extracts by reverse-phase high-performance liquid chromatography (HPLC) using photodiode array detection. Total concentrations of PAs and ginsenosides varied between 150 and 780 mg/kg FW and 5,920 and 15,660 mg/kg FW, respectively. No correlation existed between the content of ginsenosides and PAs and root FW or between the total concentration of ginsenosides and PAs. Strong significant correlation was found between total content of ginsenosides and ginsenoside Rb1 (r = 0.8190, P < 0.0001) and between total content of PAs and falcarinol (r = 0.9904, P < 0.0001). Based on the results of this study, it was concluded that it is possible to select large American ginseng roots for increased biomass production and concentration of bioactive ginsenosides and PAs without affecting the profile of bioactive compounds. Ginsenoside Rb1 and falcarinol were found to be important selection parameters for identifying superior genotypes with the highest content of bioactive compounds.
Literature
1.
go back to reference Choi H-K, Wen JA (2000) Phylogenetic analysis of Panax (Araliaceae): integrating cpDNA restriction site and nuclear rDNA ITS sequence data. Plant Syst Evol 224:109–120CrossRef Choi H-K, Wen JA (2000) Phylogenetic analysis of Panax (Araliaceae): integrating cpDNA restriction site and nuclear rDNA ITS sequence data. Plant Syst Evol 224:109–120CrossRef
2.
go back to reference McGraw JB (2001) Evidence for decline in stature of American ginseng plants from herbarium specimens. Biol Conserv 98:25–32CrossRef McGraw JB (2001) Evidence for decline in stature of American ginseng plants from herbarium specimens. Biol Conserv 98:25–32CrossRef
3.
go back to reference Christensen LP (2008) Ginsenosides: chemistry, biosynthesis, analysis and potential health effects. In: Taylor SL (ed) Advances in food and nutrition research, vol 55. Elsevier, New York, pp 1–99 Christensen LP (2008) Ginsenosides: chemistry, biosynthesis, analysis and potential health effects. In: Taylor SL (ed) Advances in food and nutrition research, vol 55. Elsevier, New York, pp 1–99
4.
go back to reference Kennedy DO, Scholey AB (2003) Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 75:687–700PubMedCrossRef Kennedy DO, Scholey AB (2003) Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 75:687–700PubMedCrossRef
5.
go back to reference Sticher O (1998) Getting to the root of ginseng. Chemtech 28:26–32 Sticher O (1998) Getting to the root of ginseng. Chemtech 28:26–32
6.
7.
go back to reference Yun TK (2003) Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res 523–524:63–74PubMed Yun TK (2003) Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res 523–524:63–74PubMed
8.
go back to reference Christensen LP, Jensen M, Kidmose U (2006) Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. J Agric Food Chem 54:8995–9003PubMedCrossRef Christensen LP, Jensen M, Kidmose U (2006) Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. J Agric Food Chem 54:8995–9003PubMedCrossRef
9.
go back to reference Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693PubMedCrossRef Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693PubMedCrossRef
10.
go back to reference Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505PubMedCrossRef Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505PubMedCrossRef
11.
go back to reference Wang A, Wang C-Z, Wu J-A, Osinski J, Yuan C-S (2005) Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 16:272–277PubMedCrossRef Wang A, Wang C-Z, Wu J-A, Osinski J, Yuan C-S (2005) Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 16:272–277PubMedCrossRef
12.
go back to reference Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16(Suppl.):S28–S37PubMed Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16(Suppl.):S28–S37PubMed
13.
go back to reference Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Disp 31:1065–1071CrossRef Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Disp 31:1065–1071CrossRef
14.
go back to reference Wakabayashi C, Hasegawa H, Murata J, Saiki I (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9:411–417PubMed Wakabayashi C, Hasegawa H, Murata J, Saiki I (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9:411–417PubMed
15.
go back to reference Murphy LL, Rice JA, Zong W (2001) Ginsenosides Rc and Rh2 inhibit MCF-7 cell proliferation through distinctly different mechanisms. Mol Biol Cell 12:141a Murphy LL, Rice JA, Zong W (2001) Ginsenosides Rc and Rh2 inhibit MCF-7 cell proliferation through distinctly different mechanisms. Mol Biol Cell 12:141a
16.
go back to reference Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K (1994) Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside Rb2. Biol Pharm Bull 17:635–639PubMed Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K (1994) Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside Rb2. Biol Pharm Bull 17:635–639PubMed
17.
go back to reference Rudakewich M, Ba F, Benishin CG (2001) Neurotrophic and neuroprotective actions of ginsenosides Rb1 and Rg1. Planta Med 67:533–537PubMedCrossRef Rudakewich M, Ba F, Benishin CG (2001) Neurotrophic and neuroprotective actions of ginsenosides Rb1 and Rg1. Planta Med 67:533–537PubMedCrossRef
18.
go back to reference Yamaguchi Y, Higashi M, Kobayashi H (1996) Effects of ginsenosides on impaired performance caused by scopolamine in rats. Eur J Pharmacol 312:149–151PubMedCrossRef Yamaguchi Y, Higashi M, Kobayashi H (1996) Effects of ginsenosides on impaired performance caused by scopolamine in rats. Eur J Pharmacol 312:149–151PubMedCrossRef
19.
go back to reference Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858PubMedCrossRef Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858PubMedCrossRef
20.
go back to reference Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X (2007) Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharmacol 7:313–320PubMedCrossRef Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X (2007) Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharmacol 7:313–320PubMedCrossRef
21.
go back to reference Cho JY, Kim AR, Yoo ES, Baik KU, Park MH (2002) Ginsenosides from Panax ginseng differentially regulates lymphocyte proliferation. Planta Med 68:497–500PubMedCrossRef Cho JY, Kim AR, Yoo ES, Baik KU, Park MH (2002) Ginsenosides from Panax ginseng differentially regulates lymphocyte proliferation. Planta Med 68:497–500PubMedCrossRef
22.
go back to reference Teng C-M, Kuo S-C, Ko F-N, Lee JC, Lee L-G, Chen S-C, Huang T-F (1989) Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta 990:315–320PubMed Teng C-M, Kuo S-C, Ko F-N, Lee JC, Lee L-G, Chen S-C, Huang T-F (1989) Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta 990:315–320PubMed
23.
go back to reference Kuo S-C, Teng C-M, Lee J-C, Ko F-N, Chen S-C, Wu T-S (1990) Antiplatelet components in Panax ginseng. Planta Med 56:164–167PubMedCrossRef Kuo S-C, Teng C-M, Lee J-C, Ko F-N, Chen S-C, Wu T-S (1990) Antiplatelet components in Panax ginseng. Planta Med 56:164–167PubMedCrossRef
24.
go back to reference Hirakura K, Morita M, Nakajima K, Ikeya Y, Mitsuhashi H (1991) Polyacetylenes from the roots of Panax ginseng. Phytochemistry 30:3327–3333CrossRef Hirakura K, Morita M, Nakajima K, Ikeya Y, Mitsuhashi H (1991) Polyacetylenes from the roots of Panax ginseng. Phytochemistry 30:3327–3333CrossRef
25.
go back to reference Fujimoto Y, Satoh M, Takeuchi N, Kirisawa M (1991) Cytotoxic acetylenes from Panax quinquefolium. Chem Pharm Bull 39:521–523PubMed Fujimoto Y, Satoh M, Takeuchi N, Kirisawa M (1991) Cytotoxic acetylenes from Panax quinquefolium. Chem Pharm Bull 39:521–523PubMed
26.
go back to reference Fujimoto Y, Wang H, Satoh M, Takeuchi N (1994) Polyacetylenes from Panax quinquefolium. Phytochemistry 35:1255–1257CrossRef Fujimoto Y, Wang H, Satoh M, Takeuchi N (1994) Polyacetylenes from Panax quinquefolium. Phytochemistry 35:1255–1257CrossRef
27.
go back to reference Alanko J, Kurahashi Y, Yoshimoto T, Yamamoto S, Baba K (1994) Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol 48:1979–1981PubMedCrossRef Alanko J, Kurahashi Y, Yoshimoto T, Yamamoto S, Baba K (1994) Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol 48:1979–1981PubMedCrossRef
28.
go back to reference Metzger BT, Barnes DM, Reed JD (2008) Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56:3554–3560PubMedCrossRef Metzger BT, Barnes DM, Reed JD (2008) Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56:3554–3560PubMedCrossRef
29.
go back to reference Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K (1990) Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull 38:3480–3482PubMed Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K (1990) Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull 38:3480–3482PubMed
30.
go back to reference Kobæk-Larsen M, Christensen LP, Vach W, Ritskes-Hoitinga J, Brandt K (2005) Inhibitory effects of feeding with carrots or (–)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem 53:1823–1827PubMedCrossRef Kobæk-Larsen M, Christensen LP, Vach W, Ritskes-Hoitinga J, Brandt K (2005) Inhibitory effects of feeding with carrots or (–)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem 53:1823–1827PubMedCrossRef
31.
go back to reference Zidorn C, Johrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523PubMedCrossRef Zidorn C, Johrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523PubMedCrossRef
32.
go back to reference Washida D, Kitanaka S (2003) Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull 51:1314–1317PubMedCrossRef Washida D, Kitanaka S (2003) Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull 51:1314–1317PubMedCrossRef
33.
go back to reference Wills RBH, Stuart DL (2001) Production of high quality Australian ginseng. RIRDC Publication No. 01/170. Kingston, ACT Wills RBH, Stuart DL (2001) Production of high quality Australian ginseng. RIRDC Publication No. 01/170. Kingston, ACT
34.
go back to reference Soldati F, Tanaka O (1984) Panax ginseng: relation between age of plant and content of ginsenosides. Planta Med 50:351–352PubMedCrossRef Soldati F, Tanaka O (1984) Panax ginseng: relation between age of plant and content of ginsenosides. Planta Med 50:351–352PubMedCrossRef
35.
go back to reference Court WA, Reynolds LB, Hendel JG (1996) Influence of root age on the concentration of ginsenosides of American ginseng (Panax quinquefolium). Can J Plant Sci 76:853–855 Court WA, Reynolds LB, Hendel JG (1996) Influence of root age on the concentration of ginsenosides of American ginseng (Panax quinquefolium). Can J Plant Sci 76:853–855
36.
go back to reference Smith RG, Caswell D, Carriere A, Zielke B (1996) Variation in the ginsenoside content of American ginseng Panax quinquefolium L. roots. Can J Bot 74:1616–1620CrossRef Smith RG, Caswell D, Carriere A, Zielke B (1996) Variation in the ginsenoside content of American ginseng Panax quinquefolium L. roots. Can J Bot 74:1616–1620CrossRef
37.
go back to reference Kubo M, Tani T, Katsuki T, Ishizaki K, Arichi S (1980) Histochemistry I. Ginsenosides in ginseng (Panax ginseng C. A. Meyer) root. J Nat Prod 43:278–283CrossRef Kubo M, Tani T, Katsuki T, Ishizaki K, Arichi S (1980) Histochemistry I. Ginsenosides in ginseng (Panax ginseng C. A. Meyer) root. J Nat Prod 43:278–283CrossRef
38.
go back to reference Court WA, Hendel JG, Elmi J (1996) Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 755:11–17CrossRef Court WA, Hendel JG, Elmi J (1996) Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 755:11–17CrossRef
39.
go back to reference Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, van Bremen RB (2000) Use of high-performance liquid chromatography–tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal Chem 72:5417–5422PubMedCrossRef Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, van Bremen RB (2000) Use of high-performance liquid chromatography–tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal Chem 72:5417–5422PubMedCrossRef
40.
go back to reference Wang C-Z, Wu JA, McEntee E, Yuan C-S (2006) Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography. J Agric Food Chem 54:2261–2266PubMedCrossRef Wang C-Z, Wu JA, McEntee E, Yuan C-S (2006) Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography. J Agric Food Chem 54:2261–2266PubMedCrossRef
41.
go back to reference Baranska M, Schulz H, Christensen LP (2006) Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy. J Agric Food Chem 54:3629–3635PubMedCrossRef Baranska M, Schulz H, Christensen LP (2006) Structural changes of polyacetylenes in American ginseng root can be observed in situ by using Raman spectroscopy. J Agric Food Chem 54:3629–3635PubMedCrossRef
42.
go back to reference Wang W, Zhao Z-J, Xu Y, Qian X, Zhong J-J (2006) Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Appl Microbiol Biotechnol 70:298–307PubMedCrossRef Wang W, Zhao Z-J, Xu Y, Qian X, Zhong J-J (2006) Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Appl Microbiol Biotechnol 70:298–307PubMedCrossRef
43.
go back to reference Yue C-J, Zhong J-J (2005) Purification and characterisation of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem 40:3742–3748CrossRef Yue C-J, Zhong J-J (2005) Purification and characterisation of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem 40:3742–3748CrossRef
44.
go back to reference Lee M-H, Jeong J-H, Seo J-W, Shin C-G, Kim Y-S, In J-G, Yang D-C, Yi J-S, Choi Y-E (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984PubMedCrossRef Lee M-H, Jeong J-H, Seo J-W, Shin C-G, Kim Y-S, In J-G, Yang D-C, Yi J-S, Choi Y-E (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984PubMedCrossRef
Metadata
Title
Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds
Authors
Lars P. Christensen
Martin Jensen
Publication date
01-04-2009
Publisher
Springer Japan
Published in
Journal of Natural Medicines / Issue 2/2009
Print ISSN: 1340-3443
Electronic ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-008-0307-3

Other articles of this Issue 2/2009

Journal of Natural Medicines 2/2009 Go to the issue