Skip to main content
Top
Published in: Molecular Imaging and Biology 1/2010

01-02-2010 | Research Article

Bioluminescence Imaging in Mouse Models Quantifies β Cell Mass in the Pancreas and After Islet Transplantation

Authors: John Virostko, Aramandla Radhika, Greg Poffenberger, Zhongyi Chen, Marcela Brissova, Joshua Gilchrist, Brian Coleman, Maureen Gannon, E. Duco Jansen, Alvin C. Powers

Published in: Molecular Imaging and Biology | Issue 1/2010

Login to get access

Abstract

Purpose

We developed a mouse model that enables non-invasive assessment of changes in β cell mass.

Procedures

We generated a transgenic mouse expressing luciferase under control of the mouse insulin I promoter [mouse insulin promoter-luciferase-Vanderbilt University (MIP-Luc-VU)] and characterized this model in mice with increased or decreased β cell mass and after islet transplantation.

Results

Streptozotocin-induced, diabetic MIP-Luc-VU mice had a progressive decline in bioluminescence that correlated with a decrease in β cell mass. MIP-Luc-VU animals fed a high-fat diet displayed a progressive increase in bioluminescence that reflected an increase in β cell mass. MIP-Luc-VU islets transplanted beneath the renal capsule or into the liver emitted bioluminescence proportional to the number of islets transplanted and could be imaged for more than a year.

Conclusions

Bioluminescence in the MIP-Luc-VU mouse model is proportional to β cell mass in the setting of increased and decreased β cell mass and after transplantation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robertson RP (2004) Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med (USA) 350:694–705CrossRef Robertson RP (2004) Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med (USA) 350:694–705CrossRef
2.
go back to reference Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med (USA) 343:230–238CrossRef Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med (USA) 343:230–238CrossRef
3.
go back to reference McCulloch DK, Koerker DJ, Kahn SE, Bonner-Weir S, Palmer JP (1991) Correlations of in vivo beta-cell function tests with beta-cell mass and pancreatic insulin content in streptozocin-administered baboons. Diabetes (USA) 40:673–679CrossRef McCulloch DK, Koerker DJ, Kahn SE, Bonner-Weir S, Palmer JP (1991) Correlations of in vivo beta-cell function tests with beta-cell mass and pancreatic insulin content in streptozocin-administered baboons. Diabetes (USA) 40:673–679CrossRef
4.
go back to reference Davalli AM, Ogawa Y, Scaglia L et al (1995) Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes (USA) 44:104–111CrossRef Davalli AM, Ogawa Y, Scaglia L et al (1995) Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes (USA) 44:104–111CrossRef
5.
go back to reference Davalli AM, Ogawa Y, Ricordi C et al (1995) A selective decrease in the beta cell mass of human islets transplanted into diabetic nude mice. Transplantation (USA) 59:817–820 Davalli AM, Ogawa Y, Ricordi C et al (1995) A selective decrease in the beta cell mass of human islets transplanted into diabetic nude mice. Transplantation (USA) 59:817–820
6.
go back to reference Larsen MO, Rolin B, Wilken M, Carr RD, Gotfredsen CF (2003) Measurements of insulin secretory capacity and glucose tolerance to predict pancreatic beta-cell mass in vivo in the nicotinamide/streptozotocin Gottingen minipig, a model of moderate insulin deficiency and diabetes. Diabetes (USA) 52:118–123CrossRef Larsen MO, Rolin B, Wilken M, Carr RD, Gotfredsen CF (2003) Measurements of insulin secretory capacity and glucose tolerance to predict pancreatic beta-cell mass in vivo in the nicotinamide/streptozotocin Gottingen minipig, a model of moderate insulin deficiency and diabetes. Diabetes (USA) 52:118–123CrossRef
7.
go back to reference Kjems LL, Kirby BM, Welsh EM et al (2001) Decrease in beta-cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes (USA) 50:2001–2012CrossRef Kjems LL, Kirby BM, Welsh EM et al (2001) Decrease in beta-cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes (USA) 50:2001–2012CrossRef
8.
go back to reference Saito K, Yaginuma N, Takahashi T (1979) Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med (USA) 129:273–283CrossRef Saito K, Yaginuma N, Takahashi T (1979) Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med (USA) 129:273–283CrossRef
9.
go back to reference Bonner-Weir S, Trent DF, Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest (USA) 71:1544–1553CrossRef Bonner-Weir S, Trent DF, Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest (USA) 71:1544–1553CrossRef
10.
go back to reference Virostko J, Jansen ED, Powers AC (2006) Current status of imaging pancreatic islets. Curr Diab Rep (USA) 6:328–332CrossRef Virostko J, Jansen ED, Powers AC (2006) Current status of imaging pancreatic islets. Curr Diab Rep (USA) 6:328–332CrossRef
11.
go back to reference Lacy PE (1967) The pancreatic beta cell. Structure and function. N Engl J Med (USA) 276:187–195 Lacy PE (1967) The pancreatic beta cell. Structure and function. N Engl J Med (USA) 276:187–195
12.
go back to reference Paty BW, Bonner-Weir S, Laughlin MR, McEwan AJ, Shapiro AM (2004) Toward development of imaging modalities for islets after transplantation: insights from the National Institutes of Health Workshop on Beta Cell Imaging. Transplantation (USA) 77:1133–1137CrossRef Paty BW, Bonner-Weir S, Laughlin MR, McEwan AJ, Shapiro AM (2004) Toward development of imaging modalities for islets after transplantation: insights from the National Institutes of Health Workshop on Beta Cell Imaging. Transplantation (USA) 77:1133–1137CrossRef
13.
go back to reference Barnett BP, Arepally A, Karmarkar PV et al (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med (USA) 13:986–991 Barnett BP, Arepally A, Karmarkar PV et al (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med (USA) 13:986–991
14.
go back to reference Biancone L, Crich SG, Cantaluppi V et al (2007) Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed (USA) 20:40–48CrossRef Biancone L, Crich SG, Cantaluppi V et al (2007) Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed (USA) 20:40–48CrossRef
15.
go back to reference Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med (USA) 12:144–148 Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med (USA) 12:144–148
16.
go back to reference Gimi B, Leoni L, Oberholzer J et al (2006) Functional MR microimaging of pancreatic beta-cell activation. Cell Transplant (USA) 15:195–203CrossRef Gimi B, Leoni L, Oberholzer J et al (2006) Functional MR microimaging of pancreatic beta-cell activation. Cell Transplant (USA) 15:195–203CrossRef
17.
go back to reference Jirak D, Kriz J, Herynek V et al (2004) MRI of transplanted pancreatic islets. Magn Reson Med (USA) 52:1228–1233CrossRef Jirak D, Kriz J, Herynek V et al (2004) MRI of transplanted pancreatic islets. Magn Reson Med (USA) 52:1228–1233CrossRef
18.
go back to reference Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes (USA) 55:2931–2938CrossRef Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes (USA) 55:2931–2938CrossRef
19.
go back to reference Zheng Q, Dai H, Merritt ME et al (2005) A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. J Am Chem Soc (USA) 127:16178–16188CrossRef Zheng Q, Dai H, Merritt ME et al (2005) A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. J Am Chem Soc (USA) 127:16178–16188CrossRef
20.
go back to reference Lu Y, Dang H, Middleton B et al (2006) Noninvasive imaging of islet grafts using positron-emission tomography. Proc Natl Acad Sci U S A (USA) 103:11294–11299CrossRef Lu Y, Dang H, Middleton B et al (2006) Noninvasive imaging of islet grafts using positron-emission tomography. Proc Natl Acad Sci U S A (USA) 103:11294–11299CrossRef
21.
go back to reference Toso C, Zaidi H, Morel P et al (2005) Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation (USA) 79:353–355CrossRef Toso C, Zaidi H, Morel P et al (2005) Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation (USA) 79:353–355CrossRef
22.
go back to reference Kim SJ, Doudet DJ, Studenov AR et al (2006) Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med (USA) 12:1423–1428 Kim SJ, Doudet DJ, Studenov AR et al (2006) Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med (USA) 12:1423–1428
23.
go back to reference Clark PB, Gage HD, Brown-Proctor C et al (2004) Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [18F]4-fluorobenzyltrozamicol. Eur J Nucl Med Mol Imaging (USA) 31:258–260CrossRef Clark PB, Gage HD, Brown-Proctor C et al (2004) Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [18F]4-fluorobenzyltrozamicol. Eur J Nucl Med Mol Imaging (USA) 31:258–260CrossRef
24.
go back to reference Moore A, Bonner-Weir S, Weissleder R (2001) Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes. Diabetes (USA) 50:2231–2236CrossRef Moore A, Bonner-Weir S, Weissleder R (2001) Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes. Diabetes (USA) 50:2231–2236CrossRef
25.
go back to reference Ladriere L, Malaisse-Lagae F, Alejandro R, Malaisse WJ (2001) Pancreatic fate of a (125) I-labelled mouse monoclonal antibody directed against pancreatic B-cell surface ganglioside(s) in control and diabetic rats. Cell Biochem Funct (USA) 19:107–115CrossRef Ladriere L, Malaisse-Lagae F, Alejandro R, Malaisse WJ (2001) Pancreatic fate of a (125) I-labelled mouse monoclonal antibody directed against pancreatic B-cell surface ganglioside(s) in control and diabetic rats. Cell Biochem Funct (USA) 19:107–115CrossRef
26.
go back to reference Schneider S, Feilen PJ, Schreckenberger M et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diabetes (USA) 113:388–395CrossRef Schneider S, Feilen PJ, Schreckenberger M et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diabetes (USA) 113:388–395CrossRef
27.
go back to reference Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest (USA) 116:1506–1513CrossRef Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest (USA) 116:1506–1513CrossRef
28.
go back to reference Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol (USA) 33:855–864CrossRef Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol (USA) 33:855–864CrossRef
29.
go back to reference Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol (USA) 66:523–531CrossRef Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol (USA) 66:523–531CrossRef
30.
go back to reference Virostko J, Chen Z, Fowler M et al (2004) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants. Mol Imaging (USA) 3:333–342CrossRef Virostko J, Chen Z, Fowler M et al (2004) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants. Mol Imaging (USA) 3:333–342CrossRef
31.
go back to reference Fowler M, Virostko J, Chen Z et al (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation (USA) 79:768–776CrossRef Fowler M, Virostko J, Chen Z et al (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation (USA) 79:768–776CrossRef
32.
go back to reference Lu Y, Dang H, Middleton B et al (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther (USA) 9:428–435CrossRef Lu Y, Dang H, Middleton B et al (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther (USA) 9:428–435CrossRef
33.
go back to reference Chen X, Zhang X, Larson CS, Baker MS, Kaufman DB (2006) In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation (USA) 81:1421–1427CrossRef Chen X, Zhang X, Larson CS, Baker MS, Kaufman DB (2006) In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation (USA) 81:1421–1427CrossRef
34.
go back to reference Park SY, Wang X, Chen Z et al (2005) Optical imaging of pancreatic beta cells in living mice expressing a mouse insulin I promoter-firefly luciferase transgene. Genesis (USA) 43:80–86CrossRef Park SY, Wang X, Chen Z et al (2005) Optical imaging of pancreatic beta cells in living mice expressing a mouse insulin I promoter-firefly luciferase transgene. Genesis (USA) 43:80–86CrossRef
35.
go back to reference Smith SJ, Zhang H, Clermont AO, et al (2006) In vivo monitoring of pancreatic beta-cells in a transgenic mouse model. Mol Imaging (USA) 5 Smith SJ, Zhang H, Clermont AO, et al (2006) In vivo monitoring of pancreatic beta-cells in a transgenic mouse model. Mol Imaging (USA) 5
36.
go back to reference Hara M, Wang X, Kawamura T et al (2003) Transgenic mice with green fluorescent protein-labeled pancreatic beta-cells. Am J Physiol Endocrinol Metab (USA) 284:E177–E183 Hara M, Wang X, Kawamura T et al (2003) Transgenic mice with green fluorescent protein-labeled pancreatic beta-cells. Am J Physiol Endocrinol Metab (USA) 284:E177–E183
37.
go back to reference Zhang W, Feng JQ, Harris SE et al (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res (USA) 10:423–434CrossRef Zhang W, Feng JQ, Harris SE et al (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res (USA) 10:423–434CrossRef
38.
go back to reference Gannon M, Gamer LW, Wright CV (2001) Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol (USA) 238:185–201 Gannon M, Gamer LW, Wright CV (2001) Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol (USA) 238:185–201
39.
go back to reference Brissova M, Fowler M, Wiebe P et al (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes (USA) 53:1318–1325CrossRef Brissova M, Fowler M, Wiebe P et al (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes (USA) 53:1318–1325CrossRef
40.
go back to reference Wang T, Lacik I, Brissova M et al (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol (USA) 15:358–362CrossRef Wang T, Lacik I, Brissova M et al (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol (USA) 15:358–362CrossRef
41.
go back to reference Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem (USA) 277:11225–11232 Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem (USA) 277:11225–11232
42.
go back to reference Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem (USA) 53:1087–1097CrossRef Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem (USA) 53:1087–1097CrossRef
43.
go back to reference Brissova M, Blaha M, Spear C et al (2005) Reduced PDX-1 expression impairs islet response to insulin resistance and worsens glucose homeostasis. Am J Physiol Endocrinol Metab (USA) 288:E707–E714CrossRef Brissova M, Blaha M, Spear C et al (2005) Reduced PDX-1 expression impairs islet response to insulin resistance and worsens glucose homeostasis. Am J Physiol Endocrinol Metab (USA) 288:E707–E714CrossRef
44.
go back to reference Virostko J, Powers AC, Jansen ED (2007) Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images. Appl Opt (USA) 46:2540–2547 Virostko J, Powers AC, Jansen ED (2007) Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images. Appl Opt (USA) 46:2540–2547
45.
go back to reference Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt (USA) 12:024007CrossRef Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt (USA) 12:024007CrossRef
46.
go back to reference Kriz J, Jirak D, Girman P et al (2005) Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation (USA) 80:1596–1603CrossRef Kriz J, Jirak D, Girman P et al (2005) Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation (USA) 80:1596–1603CrossRef
47.
go back to reference Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc (USA) 1:429–435CrossRef Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc (USA) 1:429–435CrossRef
48.
go back to reference Kennedy HJ, Pouli AE, Ainscow EK et al (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem (USA) 274:13281–13291 Kennedy HJ, Pouli AE, Ainscow EK et al (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem (USA) 274:13281–13291
49.
go back to reference Nielsen DA, Welsh M, Casadaban MJ, Steiner DF (1985) Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem (USA) 260:13585–13589 Nielsen DA, Welsh M, Casadaban MJ, Steiner DF (1985) Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem (USA) 260:13585–13589
Metadata
Title
Bioluminescence Imaging in Mouse Models Quantifies β Cell Mass in the Pancreas and After Islet Transplantation
Authors
John Virostko
Aramandla Radhika
Greg Poffenberger
Zhongyi Chen
Marcela Brissova
Joshua Gilchrist
Brian Coleman
Maureen Gannon
E. Duco Jansen
Alvin C. Powers
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 1/2010
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-009-0240-1

Other articles of this Issue 1/2010

Molecular Imaging and Biology 1/2010 Go to the issue