Skip to main content
Top
Published in: European Spine Journal 3/2014

01-03-2014 | Original Article

Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model

Authors: Mostyn R N O Yong, Siamak Saifzadeh, Geoffrey N Askin, Robert D Labrom, Dietmar W Hutmacher, Clayton J Adam

Published in: European Spine Journal | Issue 3/2014

Login to get access

Abstract

Purpose

We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini-open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model.

Methods

In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels: (a) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54 μg rhBMP-2 (b) CaP-coated PCL-based scaffold alone or (c) autograft (mulched rib head). Fusion was assessed at 6 months post-surgery.

Results

Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL-based scaffold group in comparison with either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL-based scaffold group in all loading directions in comparison with the other two groups.

Conclusion

The results of this study demonstrate that rhBMP-2 plus PCL-based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Newton PO, Wenger DR, Mubarak SJ, Meyer RS (1997) Anterior release and fusion in pediatric spinal deformity. A comparison of early outcome and cost of thoracoscopic and open thoracotomy approaches. Spine 22(12):1398–1406PubMedCrossRef Newton PO, Wenger DR, Mubarak SJ, Meyer RS (1997) Anterior release and fusion in pediatric spinal deformity. A comparison of early outcome and cost of thoracoscopic and open thoracotomy approaches. Spine 22(12):1398–1406PubMedCrossRef
3.
go back to reference Picetti GD 3rd, Pang D, Bueff HU (2002) Thoracoscopic techniques for the treatment of scoliosis: early results in procedure development. Neurosurgery 51(4):978–984PubMed Picetti GD 3rd, Pang D, Bueff HU (2002) Thoracoscopic techniques for the treatment of scoliosis: early results in procedure development. Neurosurgery 51(4):978–984PubMed
4.
go back to reference Izatt MT, Harvey JR, Adam CJ, Fender D, Labrom RD, Askin GN (2006) Recovery of pulmonary function following endoscopic anterior scoliosis correction: evaluation at 3, 6, 12 and 24 months after surgery. Spine 31(21):2469–2477PubMedCrossRef Izatt MT, Harvey JR, Adam CJ, Fender D, Labrom RD, Askin GN (2006) Recovery of pulmonary function following endoscopic anterior scoliosis correction: evaluation at 3, 6, 12 and 24 months after surgery. Spine 31(21):2469–2477PubMedCrossRef
5.
go back to reference Gatehouse SC, Izatt MT, Adam CJ, Harvey JR, Labrom RD, Askin GN (2007) Perioperative aspects of endoscopic anterior scoliosis surgery: the learning curve for a consecutive series of 100 patients. J Spinal Disord Tech 20(4):317–323PubMedCrossRef Gatehouse SC, Izatt MT, Adam CJ, Harvey JR, Labrom RD, Askin GN (2007) Perioperative aspects of endoscopic anterior scoliosis surgery: the learning curve for a consecutive series of 100 patients. J Spinal Disord Tech 20(4):317–323PubMedCrossRef
7.
go back to reference Sandhu HS (2000) Anterior lumbar interbody fusion with osteoinductive growth factors. Clin Orthop Relat Res 371:56–60PubMedCrossRef Sandhu HS (2000) Anterior lumbar interbody fusion with osteoinductive growth factors. Clin Orthop Relat Res 371:56–60PubMedCrossRef
10.
go back to reference Panjabi M (1998) Biomechanical evaluation of spinal fixation devices: 1. A conceptual framework. Spine 13(10):1129–1134CrossRef Panjabi M (1998) Biomechanical evaluation of spinal fixation devices: 1. A conceptual framework. Spine 13(10):1129–1134CrossRef
11.
go back to reference Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491PubMedCrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491PubMedCrossRef
12.
go back to reference Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137(1):154–161CrossRef Yang F, Wolke JGC, Jansen JA (2008) Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering. Chem Eng J 137(1):154–161CrossRef
13.
go back to reference Patel VV, Zhao L, Wong P, Pradhan BB, Bae HW, Kanim L, Delamarter RB (2006) An in vitro and in vivo analysis of fibrin glue use to control bone morphogenetic protein-stimulated bone growth. Spine J 6(4):397–403PubMedCrossRef Patel VV, Zhao L, Wong P, Pradhan BB, Bae HW, Kanim L, Delamarter RB (2006) An in vitro and in vivo analysis of fibrin glue use to control bone morphogenetic protein-stimulated bone growth. Spine J 6(4):397–403PubMedCrossRef
14.
go back to reference Sucato DJ, Hedequist D, Zhang H, Pierce WA, O’Brien SE, Welch RD (2004) Recombinant human bone morphogenetic protein-2 enhances anterior spinal fusion in a thoracoscopically instrumented animal model. J Bone Joint Surg 86-A(4):752–762PubMed Sucato DJ, Hedequist D, Zhang H, Pierce WA, O’Brien SE, Welch RD (2004) Recombinant human bone morphogenetic protein-2 enhances anterior spinal fusion in a thoracoscopically instrumented animal model. J Bone Joint Surg 86-A(4):752–762PubMed
15.
go back to reference Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104CrossRef Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104CrossRef
16.
go back to reference Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Hassan S (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg 88(Suppl. 2):103–109PubMedCrossRef Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Hassan S (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg 88(Suppl. 2):103–109PubMedCrossRef
18.
go back to reference Burkus JK (2004) Bone morphogenetic protein in anterior lumbar interbody fusion: old techniques and new technologies. Invited submission from the Joint section meeting on disorders of the spine and peripheral nerves. J Neurosurg Spine 1(3):254–260PubMedCrossRef Burkus JK (2004) Bone morphogenetic protein in anterior lumbar interbody fusion: old techniques and new technologies. Invited submission from the Joint section meeting on disorders of the spine and peripheral nerves. J Neurosurg Spine 1(3):254–260PubMedCrossRef
19.
go back to reference Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11:471–491PubMedCrossRef Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11:471–491PubMedCrossRef
20.
go back to reference Walker DH, Wright NM (2002) Bone morphogenetic protein and spinal fusion. Neurosug Focus 13(6):article 3 Walker DH, Wright NM (2002) Bone morphogenetic protein and spinal fusion. Neurosug Focus 13(6):article 3
21.
go back to reference Cunningham BW, Kanayama M, Parker LM, Weis JC, Sefter JC, Fedder IL, McAfee PC (1999) Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 24(6):509–518PubMedCrossRef Cunningham BW, Kanayama M, Parker LM, Weis JC, Sefter JC, Fedder IL, McAfee PC (1999) Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 24(6):509–518PubMedCrossRef
22.
go back to reference Hutmacher DW, Schanz JT, Lam CX, Tan KC, Lim TC (2007) State of the art and future directions of scaffold—based bone engineering from a biomaterials perspective. J Tissue Eng Med 1(4):245–260CrossRef Hutmacher DW, Schanz JT, Lam CX, Tan KC, Lim TC (2007) State of the art and future directions of scaffold—based bone engineering from a biomaterials perspective. J Tissue Eng Med 1(4):245–260CrossRef
23.
go back to reference Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27(3):E64–E70PubMedCrossRef Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27(3):E64–E70PubMedCrossRef
24.
go back to reference Yong MR, Saifzadeh S, Askin GN, Labrom RD, Hutmacher DW, Adam CJ (2013) Establishment and characterization of an open mini-thoracotomy surgical approach to an ovine thoracic spine fusion model. Tissue Engineering C. doi:10.1089/ten.TEC.2012.0746 Yong MR, Saifzadeh S, Askin GN, Labrom RD, Hutmacher DW, Adam CJ (2013) Establishment and characterization of an open mini-thoracotomy surgical approach to an ovine thoracic spine fusion model. Tissue Engineering C. doi:10.​1089/​ten.​TEC.​2012.​0746
25.
go back to reference Cunningham BW, Kotani Y, McNulty PS, Cappucino A, Kanayama M, Fedder IL, McAfee PC (1998) Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion. A comparative radiographic, biomechanical, and histological analysis in a sheep model. Spine 23(12):1333–1340PubMedCrossRef Cunningham BW, Kotani Y, McNulty PS, Cappucino A, Kanayama M, Fedder IL, McAfee PC (1998) Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion. A comparative radiographic, biomechanical, and histological analysis in a sheep model. Spine 23(12):1333–1340PubMedCrossRef
26.
go back to reference Hecht BP, Fischgrund JS, Herkowitz HN, Penman L, Toth JM, Shirkhoda A (1999) The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 24(7):629–636PubMedCrossRef Hecht BP, Fischgrund JS, Herkowitz HN, Penman L, Toth JM, Shirkhoda A (1999) The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 24(7):629–636PubMedCrossRef
Metadata
Title
Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model
Authors
Mostyn R N O Yong
Siamak Saifzadeh
Geoffrey N Askin
Robert D Labrom
Dietmar W Hutmacher
Clayton J Adam
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 3/2014
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-013-3085-x

Other articles of this Issue 3/2014

European Spine Journal 3/2014 Go to the issue