Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Research

Biological characteristics of a new human glioma cell line transformed into A2B5+ stem cells

Authors: Yanyan Li, Hangzhou Wang, Ting Sun, Jinming Chen, Lingchuan Guo, Haitao Shen, Ziwei Du, Youxin Zhou

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Objective

The new glioma cell line SHG-139 was established and its phenotype, tumorigenicity, pathological characteristics, derived stem cells SHG139S were studied.

Methods

Immunohistochemistry was used to assess expressions in the patient and mouse tumor tissues, SHG-139 and SHG-139S. Primary SHG-139 culture was performed, cell proliferation, cell cycle and genetic characteristics were assessed. MiRNA (Micro RNA) and LncRNA (Long non-coding RNA) microarray was performed.

Results

We found that the glioma tissue was positive for A2B5 (Glial precursors ganglioside), GFAP (Glial fibrillary acidic protein), S-100 (Acid calcium bingding protein), VEGF (Vascular endothelial growth factor), VEGFR (Vascular endothelial growth factor receptor) and negative for Ki-67 (Nuclcar- associated antigen). SHG-139 proliferated significantly within 24h; its total number of chromosomes was 68; ratios of SHG-139 and SHG-139S cells in G1 phase were highest. SHG-139 cells were positive for A2B5, GalC (Galactocerebrosides), GFAP, S-100 and Vimentin, while SHG-139S cells were positive for A2B5, Nestin, and NG2 (Neuron-glia antigen2), and negative for Vimentin and IDHR132H (Isocitrate dehydrogenase); cells rarely stained for CD133 (Cluster of differentiation133). SHG-139 intracranial xenografts expressed GFAP, but no overt oligodendroglioma was observed. In SHG-139S xenografts, GFAP and S-100 were expressed, while CD133 was not detected; a few A2B5+ cells were found at tumor edges, and typical oligodendroglioma were obtained. In addition, SHG-139S xenograft tumors were more aggressive than those of SHG-139. Anti-mouse CD31 (Cluster of differentiation31) staining revealed murine vessels at the border between xenograft tumor and normal brain tissue; Anti-human CD34 (Cluster of differentiation34) staining was negative. Biochip technology of SHG139S showed several miRNA and lncRNA were differently expressed in SHG139 and SHG139S.

Conclusions

SHG-139 was an astroglioma cell line which yielded stem cells SHG-139S. SHG-139S cells constituted an A2B5+/CD133 GSC subgroup.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yan GN, Yang L, Lv YF, Shi Y, Shen LL, Yao XH, et al. Endothelial cells promote stem-like phenotype of glioma cells through activating hedgehog pathway [J]. J Pathol. 2014;3:6. Yan GN, Yang L, Lv YF, Shi Y, Shen LL, Yao XH, et al. Endothelial cells promote stem-like phenotype of glioma cells through activating hedgehog pathway [J]. J Pathol. 2014;3:6.
2.
go back to reference Wu TF, Chen JM, Chen SS, Chen GL, Wei YX, Xie XS, et al. Phenotype of SHG-44 glioma stem cell spheres and pathological characteristics of their xenograft tumors [J]. Zhonghua Zhong Liu Za Zhi. 2013;35(10):726–31.PubMed Wu TF, Chen JM, Chen SS, Chen GL, Wei YX, Xie XS, et al. Phenotype of SHG-44 glioma stem cell spheres and pathological characteristics of their xenograft tumors [J]. Zhonghua Zhong Liu Za Zhi. 2013;35(10):726–31.PubMed
3.
go back to reference Gangoso E, Thirant C, Chneiweiss H, Medina JM, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype [J]. Cell Death Dis. 2014;5:e1023.CrossRefPubMedCentralPubMed Gangoso E, Thirant C, Chneiweiss H, Medina JM, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype [J]. Cell Death Dis. 2014;5:e1023.CrossRefPubMedCentralPubMed
4.
go back to reference Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, et al. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor.[J]. BMC Cancer. 2013;13:597.CrossRefPubMedCentralPubMed Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, et al. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor.[J]. BMC Cancer. 2013;13:597.CrossRefPubMedCentralPubMed
5.
go back to reference Henderson SD, Kimler BF, Morantz RA. Radiation therapy of 9L rat brain tumors [J]. Int J Radiat Oncol Biol Phys. 1981;7:497–502.CrossRefPubMed Henderson SD, Kimler BF, Morantz RA. Radiation therapy of 9L rat brain tumors [J]. Int J Radiat Oncol Biol Phys. 1981;7:497–502.CrossRefPubMed
6.
go back to reference Ponten J. Neoplastic human glia cells in culture [M]. In: Human Tumor Cells in vitro [J]. New York: Plenum Press; 1975. p. 175–85.CrossRef Ponten J. Neoplastic human glia cells in culture [M]. In: Human Tumor Cells in vitro [J]. New York: Plenum Press; 1975. p. 175–85.CrossRef
7.
go back to reference Pavon LF, Marti LC, Sibov TT, Malheiros SM, Brandt RA, Cavalheiro S. Gamarra. In vitro analysis of neurospheres derived from glioblastoma primary culture: a novel methodology paradigm [J]. Front Neurol. 2014;4:214.CrossRefPubMedCentralPubMed Pavon LF, Marti LC, Sibov TT, Malheiros SM, Brandt RA, Cavalheiro S. Gamarra. In vitro analysis of neurospheres derived from glioblastoma primary culture: a novel methodology paradigm [J]. Front Neurol. 2014;4:214.CrossRefPubMedCentralPubMed
8.
go back to reference Fukaya R, Ohta S, Yamaguchi M, Fujii H, Kawakami Y, Kawase T, et al. Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1 [J]. Cancer Lett. 2010;291:150–7.CrossRefPubMed Fukaya R, Ohta S, Yamaguchi M, Fujii H, Kawakami Y, Kawase T, et al. Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1 [J]. Cancer Lett. 2010;291:150–7.CrossRefPubMed
9.
go back to reference Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells [J]. Tumour Biol. 2010;31:243–53.CrossRefPubMed Dou J, Gu N. Emerging strategies for the identification and targeting of cancer stem cells [J]. Tumour Biol. 2010;31:243–53.CrossRefPubMed
11.
go back to reference Clément V, Marino D, Cudalbu C, Hamou MF, Mlynarik V, de Tribolet N, et al. Marker-independent identification of glioma-initiating cells [J]. Nat Methods. 2010;7:224–8.CrossRefPubMed Clément V, Marino D, Cudalbu C, Hamou MF, Mlynarik V, de Tribolet N, et al. Marker-independent identification of glioma-initiating cells [J]. Nat Methods. 2010;7:224–8.CrossRefPubMed
12.
go back to reference Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines [J]. Cancer Cell. 2006;9:391–403.CrossRefPubMed Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines [J]. Cancer Cell. 2006;9:391–403.CrossRefPubMed
13.
go back to reference Fael Al-Mayhani TM, Ball SL, Zhao JW, Fawcett J, Ichimura K, Collins PV, et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours [J]. J Neurosci Methods. 2009;176:192–9.CrossRefPubMed Fael Al-Mayhani TM, Ball SL, Zhao JW, Fawcett J, Ichimura K, Collins PV, et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours [J]. J Neurosci Methods. 2009;176:192–9.CrossRefPubMed
14.
go back to reference Patru C, Romao L, Varlet P, Coulombel L, Raponi E, Cadusseau J, et al. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors [J]. BMC Cancer. 2010;10:66.CrossRefPubMedCentralPubMed Patru C, Romao L, Varlet P, Coulombel L, Raponi E, Cadusseau J, et al. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors [J]. BMC Cancer. 2010;10:66.CrossRefPubMedCentralPubMed
15.
go back to reference Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells [J]. Cell Stem Cell. 2011;8:486–98.CrossRefPubMedCentralPubMed Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells [J]. Cell Stem Cell. 2011;8:486–98.CrossRefPubMedCentralPubMed
16.
go back to reference Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA, et al. Multicellular tumor spheroids: an underestimated tool is catching up again [J]. J Biotechnol. 2010;148:3–15.CrossRefPubMed Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA, et al. Multicellular tumor spheroids: an underestimated tool is catching up again [J]. J Biotechnol. 2010;148:3–15.CrossRefPubMed
17.
go back to reference Rappa G, Mercapide J, Anzanello F, Prasmickaite L, Xi Y, Ju J, et al. Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets [J]. Exp Cell Res. 2008;314:2110–22.CrossRefPubMedCentralPubMed Rappa G, Mercapide J, Anzanello F, Prasmickaite L, Xi Y, Ju J, et al. Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets [J]. Exp Cell Res. 2008;314:2110–22.CrossRefPubMedCentralPubMed
18.
go back to reference Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P, et al. Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells [J]. Stem Cells. 2007;25:1645–53.CrossRefPubMed Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P, et al. Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells [J]. Stem Cells. 2007;25:1645–53.CrossRefPubMed
19.
go back to reference Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, et al. Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties [J]. Stem Cells Dev. 2008;17:173–84.CrossRefPubMed Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, et al. Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties [J]. Stem Cells Dev. 2008;17:173–84.CrossRefPubMed
20.
go back to reference Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines [J]. Cell Cycle. 2004;3:414–5.CrossRefPubMed Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines [J]. Cell Cycle. 2004;3:414–5.CrossRefPubMed
21.
go back to reference Thirant C, Bessette B, Varlet P, Puget S, Cadusseau J, Tavares Sdos R, et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors [J]. PLoS One. 2011;6:e16375.CrossRefPubMedCentralPubMed Thirant C, Bessette B, Varlet P, Puget S, Cadusseau J, Tavares Sdos R, et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors [J]. PLoS One. 2011;6:e16375.CrossRefPubMedCentralPubMed
22.
go back to reference Laks DR, Masterman-Smith M, Visnyei K, Angenieux B, Orozco NM, Foran I, et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma [J]. Stem Cells. 2009;27:980–7.CrossRefPubMedCentralPubMed Laks DR, Masterman-Smith M, Visnyei K, Angenieux B, Orozco NM, Foran I, et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma [J]. Stem Cells. 2009;27:980–7.CrossRefPubMedCentralPubMed
23.
go back to reference Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, et al. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens [J]. Stem Cells. 2009;27:1722–33.CrossRefPubMed Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, et al. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens [J]. Stem Cells. 2009;27:1722–33.CrossRefPubMed
24.
go back to reference Gremo F, Presta M. Role of fibroblast growth factor-2 in human brain: a focus on development [J]. Int J Dev Neurosci. 2000;18:271–9.CrossRefPubMed Gremo F, Presta M. Role of fibroblast growth factor-2 in human brain: a focus on development [J]. Int J Dev Neurosci. 2000;18:271–9.CrossRefPubMed
25.
go back to reference Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S, et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells [J]. J Biol Chem. 2008;283:10958–66.CrossRefPubMed Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S, et al. Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells [J]. J Biol Chem. 2008;283:10958–66.CrossRefPubMed
26.
go back to reference Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions [J]. Cell Death Dis. 2011;2:e200.CrossRefPubMedCentralPubMed Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions [J]. Cell Death Dis. 2011;2:e200.CrossRefPubMedCentralPubMed
27.
go back to reference Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, et al. Identification of A2B5 + CD133- tumor-initiating cells in adult human gliomas [J]. Neurosurgery. 2008;62:505–14. discussion 514–505.CrossRefPubMed Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, et al. Identification of A2B5 + CD133- tumor-initiating cells in adult human gliomas [J]. Neurosurgery. 2008;62:505–14. discussion 514–505.CrossRefPubMed
28.
go back to reference Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, et al. A2B5 cells from human glioblastoma have cancer stem cell properties [J]. Brain Pathol. 2010;20:211–21.CrossRefPubMed Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, et al. A2B5 cells from human glioblastoma have cancer stem cell properties [J]. Brain Pathol. 2010;20:211–21.CrossRefPubMed
29.
go back to reference Vik-Mo EO, Sandberg C, Olstorn H, Varghese M, Brandal P, Ramm-Pettersen J, et al. Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions [J]. Neuro Oncol. 2010;12:1220–30.PubMedCentralPubMed Vik-Mo EO, Sandberg C, Olstorn H, Varghese M, Brandal P, Ramm-Pettersen J, et al. Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions [J]. Neuro Oncol. 2010;12:1220–30.PubMedCentralPubMed
30.
go back to reference Chandran S, Hunt D, Joannides A, Zhao C, Compston A, Franklin RJ. Myelin repair: the role of stem and precursor cells in multiple sclerosis [J]. Philos Trans R Soc Lond B Biol Sci. 2008;363:171–83.CrossRefPubMedCentralPubMed Chandran S, Hunt D, Joannides A, Zhao C, Compston A, Franklin RJ. Myelin repair: the role of stem and precursor cells in multiple sclerosis [J]. Philos Trans R Soc Lond B Biol Sci. 2008;363:171–83.CrossRefPubMedCentralPubMed
Metadata
Title
Biological characteristics of a new human glioma cell line transformed into A2B5+ stem cells
Authors
Yanyan Li
Hangzhou Wang
Ting Sun
Jinming Chen
Lingchuan Guo
Haitao Shen
Ziwei Du
Youxin Zhou
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0343-z

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine