Skip to main content
Top
Published in: Current Reviews in Musculoskeletal Medicine 4/2011

01-12-2011 | Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)

Biologic augmentation of rotator cuff repair

Authors: Scott R. Montgomery, Frank A. Petrigliano, Seth C. Gamradt

Published in: Current Reviews in Musculoskeletal Medicine | Issue 4/2011

Login to get access

Abstract

Rotator cuff repair is a common orthopedic procedure. Despite advances in surgical technique, the rotator cuff tendons often fail to heal after surgery. In recent years, a number of biologic strategies have been developed and tested to augment healing after rotator cuff repair. These strategies include allograft, extracellular matrices (ECMs), platelet rich plasma (PRP), growth factors, stem cells, and gene therapy. This chapter reviews the most current research on biologic augmentation of rotator cuff repair using these methods.
Literature
1.
go back to reference Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG. Arthroscopic repair of full-thickness tears of thesupraspinatus: Does the tendon really heal? J Bone Joint Surg Am. 2005;87:1229–40.PubMedCrossRef Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG. Arthroscopic repair of full-thickness tears of thesupraspinatus: Does the tendon really heal? J Bone Joint Surg Am. 2005;87:1229–40.PubMedCrossRef
2.
go back to reference Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMed Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMed
3.
go back to reference Huijsmans PE, Pritchard MP, Berghs BM, Van Rooyen KS, Wallace AL, De Beer JF. Arthroscopic rotator cuff repair with double-row fixation. J Bone Joint Surg Am. 2007;89:1248–57.PubMedCrossRef Huijsmans PE, Pritchard MP, Berghs BM, Van Rooyen KS, Wallace AL, De Beer JF. Arthroscopic rotator cuff repair with double-row fixation. J Bone Joint Surg Am. 2007;89:1248–57.PubMedCrossRef
4.
go back to reference Lafosse L, Brozska R, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am. 2007;89(7):1533–41.PubMedCrossRef Lafosse L, Brozska R, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am. 2007;89(7):1533–41.PubMedCrossRef
5.
go back to reference Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A(2):219–24.PubMed Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A(2):219–24.PubMed
6.
go back to reference Slabaugh MA, Nho SJ, Grumet RC, et al. Does the literature confirm superior clinical results in radiographically healed rotator cuffs after rotator cuff repair? Arthroscopy. 2010;26(3):393–403.PubMedCrossRef Slabaugh MA, Nho SJ, Grumet RC, et al. Does the literature confirm superior clinical results in radiographically healed rotator cuffs after rotator cuff repair? Arthroscopy. 2010;26(3):393–403.PubMedCrossRef
7.
go back to reference Woo SLY, An KN, Arnoczky SP, Wayne JS, Fithian DC, Myers BS. Anatomy, biology, and biomechanics of tendon, ligament, and meniscus. In: Simon SR, editor. Orthopaedic basic science. Rosemont: American Academy of Orthopaedic Surgeons; 1994. p. 45–87. Woo SLY, An KN, Arnoczky SP, Wayne JS, Fithian DC, Myers BS. Anatomy, biology, and biomechanics of tendon, ligament, and meniscus. In: Simon SR, editor. Orthopaedic basic science. Rosemont: American Academy of Orthopaedic Surgeons; 1994. p. 45–87.
8.
go back to reference Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel: a biomechanical and histologic study in the dog. J Bone Joint Surg Am. 1993;75:1795–803.PubMed Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel: a biomechanical and histologic study in the dog. J Bone Joint Surg Am. 1993;75:1795–803.PubMed
9.
go back to reference • Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009 Jan;28(1):13-23. Comprehensive review of research employing specific growth factors to augment rotator cuff repair.PubMedCrossRef • Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009 Jan;28(1):13-23. Comprehensive review of research employing specific growth factors to augment rotator cuff repair.PubMedCrossRef
10.
go back to reference • Longo UG, Lamberti A, Maffulli N, Denaro V. Tissue engineered biological augmentation for tendon healing: a systematic review. Br Med Bull. 2011;98:31-59. Excellent review of tendon engineering strategies aimed at improving tendon healing with growth factors, platelet-rich plasma, gene therapy, and stem cells.PubMedCrossRef • Longo UG, Lamberti A, Maffulli N, Denaro V. Tissue engineered biological augmentation for tendon healing: a systematic review. Br Med Bull. 2011;98:31-59. Excellent review of tendon engineering strategies aimed at improving tendon healing with growth factors, platelet-rich plasma, gene therapy, and stem cells.PubMedCrossRef
11.
go back to reference • Cheung EV, Silverio L, Sperling JW. Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res. 2010 Jun;468(6):1476-84. Additional review of prior research using biologics to augment rotator cuff repair, including allograft and autograft tendon augmentation, extracellular matrices, and growth factors.PubMedCrossRef • Cheung EV, Silverio L, Sperling JW. Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res. 2010 Jun;468(6):1476-84. Additional review of prior research using biologics to augment rotator cuff repair, including allograft and autograft tendon augmentation, extracellular matrices, and growth factors.PubMedCrossRef
12.
go back to reference Musgrave DS, Fu FH, Huard J. Gene therapy and tissue engineering in orthopaedic surgery. J Am Acad Orthop Surg. 2002;10(1):6–15.PubMed Musgrave DS, Fu FH, Huard J. Gene therapy and tissue engineering in orthopaedic surgery. J Am Acad Orthop Surg. 2002;10(1):6–15.PubMed
13.
go back to reference Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng. 2004;32(1):136–47.PubMedCrossRef Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng. 2004;32(1):136–47.PubMedCrossRef
14.
go back to reference Caplan AI. Mesenchymal stem cells and gene therapy. Clin Orthop. 2000;379(suppl):S67–70.PubMed Caplan AI. Mesenchymal stem cells and gene therapy. Clin Orthop. 2000;379(suppl):S67–70.PubMed
15.
go back to reference Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRef
16.
go back to reference Ouyang HW, Goh JC, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med. 2004;32(2):321–7.PubMedCrossRef Ouyang HW, Goh JC, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med. 2004;32(2):321–7.PubMedCrossRef
17.
go back to reference Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910.PubMedCrossRef Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910.PubMedCrossRef
18.
go back to reference Gulotta LV, Kovacevic D, Ehteshami JR, Dager E, Packer JD, Rodeo SA. Application of bone marrow derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33.PubMedCrossRef Gulotta LV, Kovacevic D, Ehteshami JR, Dager E, Packer JD, Rodeo SA. Application of bone marrow derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33.PubMedCrossRef
19.
go back to reference Augustin G, Antabak A, Davila S. The periosteum. Part 1: Anatomy, histology and molecular biology. Injury. 2004;38:1115–30.CrossRef Augustin G, Antabak A, Davila S. The periosteum. Part 1: Anatomy, histology and molecular biology. Injury. 2004;38:1115–30.CrossRef
20.
go back to reference Ritsila VA, Santavirta S, Alhopuro S, Poussa M, Jaroma H, Rubak JM, Eskola A, Hoikka V, Snellman O, Osterman K. Periosteal and perichondral grafting in reconstructive surgery. Clin Orthop Relat Res 302:259–265. Ritsila VA, Santavirta S, Alhopuro S, Poussa M, Jaroma H, Rubak JM, Eskola A, Hoikka V, Snellman O, Osterman K. Periosteal and perichondral grafting in reconstructive surgery. Clin Orthop Relat Res 302:259–265.
21.
go back to reference Ritsila V, Alhopuro S, Rintala A. Bone formation with free periosteum. An experimental study. Scand J Plast Reconstr Surg. 1972;6:51–6.PubMedCrossRef Ritsila V, Alhopuro S, Rintala A. Bone formation with free periosteum. An experimental study. Scand J Plast Reconstr Surg. 1972;6:51–6.PubMedCrossRef
22.
go back to reference Rubak JM. Osteochondrogenesis of free periosteal grafts in the rabbit iliac crest. Acta Orthop Scand. 1983;54:826–31.PubMedCrossRef Rubak JM. Osteochondrogenesis of free periosteal grafts in the rabbit iliac crest. Acta Orthop Scand. 1983;54:826–31.PubMedCrossRef
23.
go back to reference Uddstromer L, Ritsila V. Osteogenic capacity of periosteal grafts. A qualitative and quantitative study of membranous and tubular bone periosteum in young rabbits. Scand J Plast Reconstr Surg. 1978;12:207–14.PubMedCrossRef Uddstromer L, Ritsila V. Osteogenic capacity of periosteal grafts. A qualitative and quantitative study of membranous and tubular bone periosteum in young rabbits. Scand J Plast Reconstr Surg. 1978;12:207–14.PubMedCrossRef
24.
go back to reference Chang CH, Chen CH, Su CY, Liu HT, Yu CM. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histologic study in rabbits. Knee surg Sports Traumtol Arthrosc. 2009;17(12):1447–53.CrossRef Chang CH, Chen CH, Su CY, Liu HT, Yu CM. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histologic study in rabbits. Knee surg Sports Traumtol Arthrosc. 2009;17(12):1447–53.CrossRef
25.
go back to reference Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38(7):1438–47. Epub 2010 Apr 7.PubMedCrossRef Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Arciero RA, Drissi H. Rapid isolation of human stem cells (connective tissue progenitor cells) from the proximal humerus during arthroscopic rotator cuff surgery. Am J Sports Med. 2010;38(7):1438–47. Epub 2010 Apr 7.PubMedCrossRef
26.
go back to reference Galatz LM, Sandell LJ, Rothermich SY, et al. Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res. 2006;24(3):541–50.PubMedCrossRef Galatz LM, Sandell LJ, Rothermich SY, et al. Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res. 2006;24(3):541–50.PubMedCrossRef
27.
go back to reference • Wurgler-Hauri CC, Dourte LM, Baradet TC, te al. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 2007;16 (Supple 5):S198-203. Study of temporal expression of growth factors after detachment and repair of supraspinatus tendons using immunohistochemical staining at different time points.PubMedCrossRef • Wurgler-Hauri CC, Dourte LM, Baradet TC, te al. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 2007;16 (Supple 5):S198-203. Study of temporal expression of growth factors after detachment and repair of supraspinatus tendons using immunohistochemical staining at different time points.PubMedCrossRef
28.
go back to reference • Kobayashi M, Itoi E, Minagawa H, et al. Expression of growth factors in the early phase of supraspinatus healing in rabbits. J Shoulder Elbow Surg 2006;15(3):371-7. Assessed expression of several growth factors in the first month after making a full thickness defect in the supraspinatus tendon.PubMedCrossRef • Kobayashi M, Itoi E, Minagawa H, et al. Expression of growth factors in the early phase of supraspinatus healing in rabbits. J Shoulder Elbow Surg 2006;15(3):371-7. Assessed expression of several growth factors in the first month after making a full thickness defect in the supraspinatus tendon.PubMedCrossRef
29.
go back to reference Bobacz K, Gruber R, Soleiman A, Graninger WB, Luyten FP, Erlacher L. Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis. Osteoarthritis cartilage. 2002;10(5):394–401.PubMedCrossRef Bobacz K, Gruber R, Soleiman A, Graninger WB, Luyten FP, Erlacher L. Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis. Osteoarthritis cartilage. 2002;10(5):394–401.PubMedCrossRef
30.
go back to reference Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE. Bone morphogenetic proteins-2,-12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng. 2002;8(4):591–601.PubMedCrossRef Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE. Bone morphogenetic proteins-2,-12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng. 2002;8(4):591–601.PubMedCrossRef
31.
go back to reference Li J, Kim KS, Park JS, Elmer WA, Hutton WC, Yoon ST. BMP-2 and CDMP-2 stimulation of chondrocyte production of proteoglycan. J Orthop Sci. 2003;8(6):829–35.PubMedCrossRef Li J, Kim KS, Park JS, Elmer WA, Hutton WC, Yoon ST. BMP-2 and CDMP-2 stimulation of chondrocyte production of proteoglycan. J Orthop Sci. 2003;8(6):829–35.PubMedCrossRef
32.
go back to reference Helm GA, Li JZ, Alden TD, et al. A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein-13 adenoviral gene therapy. J Neurosurg. 2001;95(2):298–307.PubMedCrossRef Helm GA, Li JZ, Alden TD, et al. A light and electron microscopic study of ectopic tendon and ligament formation induced by bone morphogenetic protein-13 adenoviral gene therapy. J Neurosurg. 2001;95(2):298–307.PubMedCrossRef
33.
go back to reference Gulotta LV, Kovacevic D, Packer JD, Ehteshami JR, Rodeo SA. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(1):180–7.PubMedCrossRef Gulotta LV, Kovacevic D, Packer JD, Ehteshami JR, Rodeo SA. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(1):180–7.PubMedCrossRef
34.
go back to reference Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng. 2003;31:1143–52.PubMedCrossRef Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ. Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann Biomed Eng. 2003;31:1143–52.PubMedCrossRef
35.
go back to reference Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, et al. Calcium-phosphate matrix with or without TGF-{beta}3 improves tendone-bone healing after rotator cuff repair. Am J Sports Med. 2001;39:811–9.CrossRef Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, et al. Calcium-phosphate matrix with or without TGF-{beta}3 improves tendone-bone healing after rotator cuff repair. Am J Sports Med. 2001;39:811–9.CrossRef
36.
go back to reference Maning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havlioglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop res. 2011 Jan 18. Maning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havlioglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop res. 2011 Jan 18.
37.
go back to reference Harwood FL, Goomer RS, Gelberman RH, Silva MJ, Amiel D. Regulation of Alpha(v)beta3 and alpha5beta1 integrin receptors by basic fibroblast growth factor and platelet-derived growth factor-BB in intrasynovial flexor tendon cells. Harwood FL, Goomer RS, Gelberman RH, Silva MJ, Amiel D. Regulation of Alpha(v)beta3 and alpha5beta1 integrin receptors by basic fibroblast growth factor and platelet-derived growth factor-BB in intrasynovial flexor tendon cells.
38.
go back to reference Nakamura N, Shino K, Natsumme T, Matsumoto N, Kaneda Y, Ochi T. Early biological effect of in vivo gene transfer of platelet-derived growth factor (PDGF)-B into healing patellar ligament. Gene Ther. 1998;5(9):1165–70.PubMedCrossRef Nakamura N, Shino K, Natsumme T, Matsumoto N, Kaneda Y, Ochi T. Early biological effect of in vivo gene transfer of platelet-derived growth factor (PDGF)-B into healing patellar ligament. Gene Ther. 1998;5(9):1165–70.PubMedCrossRef
39.
go back to reference Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26(11):1456–62.PubMedCrossRef Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26(11):1456–62.PubMedCrossRef
40.
41.
go back to reference Gospodarowicz D, Neufeld G, Schweigerer L. Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differ. 1986;19(1):1–17.PubMedCrossRef Gospodarowicz D, Neufeld G, Schweigerer L. Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differ. 1986;19(1):1–17.PubMedCrossRef
42.
go back to reference Kato T, Kawaguchi H, Hanada K, Aoyama I, Hiyama Y, Nakamura T, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res. 1998;16:654–9.PubMedCrossRef Kato T, Kawaguchi H, Hanada K, Aoyama I, Hiyama Y, Nakamura T, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res. 1998;16:654–9.PubMedCrossRef
43.
go back to reference Ishii H, Mizuta A, Sei J, Hirose S, Kudo, Hiraki Y. Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br. 2007;89:693–700.PubMedCrossRef Ishii H, Mizuta A, Sei J, Hirose S, Kudo, Hiraki Y. Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br. 2007;89:693–700.PubMedCrossRef
44.
go back to reference Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Fujimoto T, et al. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.PubMedCrossRef Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Fujimoto T, et al. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.PubMedCrossRef
45.
go back to reference Asou Y, Nifuji A, Tsuji K, et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res. 2002;20(4):827–33.PubMedCrossRef Asou Y, Nifuji A, Tsuji K, et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res. 2002;20(4):827–33.PubMedCrossRef
46.
go back to reference Brown D, Wagner D, Li X, Richardson JA, Olson EN. Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development. 1999;126(19):4317–29.PubMed Brown D, Wagner D, Li X, Richardson JA, Olson EN. Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development. 1999;126(19):4317–29.PubMed
47.
go back to reference Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments. Development. 2001;128(19):3855–66.PubMed Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments. Development. 2001;128(19):3855–66.PubMed
48.
go back to reference Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone Marrow-Derived Mesenchymal Stem Cells Transduced With Scleraxis Improve Rotator Cuff Healing in a Rat Model. Am J Sports Med. 2011 Feb 18. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone Marrow-Derived Mesenchymal Stem Cells Transduced With Scleraxis Improve Rotator Cuff Healing in a Rat Model. Am J Sports Med. 2011 Feb 18.
49.
go back to reference Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol. 2010;42(1):148–56.PubMedCrossRef Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol. 2010;42(1):148–56.PubMedCrossRef
50.
go back to reference Apte SS, Fukai N, Beier DR, Olsen BR. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J Biol Chem. 1997;272(41):25511–7.PubMedCrossRef Apte SS, Fukai N, Beier DR, Olsen BR. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J Biol Chem. 1997;272(41):25511–7.PubMedCrossRef
51.
go back to reference Holmbeck K, Bianco P, Chrysovergis K, Yamada S, Birkedal-Hansen H. MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol. 2003;163(3):661–71.PubMedCrossRef Holmbeck K, Bianco P, Chrysovergis K, Yamada S, Birkedal-Hansen H. MT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol. 2003;163(3):661–71.PubMedCrossRef
52.
go back to reference Kinoh H, Sato H, Tsunezuka Y, et al. MT-MMP, the cell surface activator of proMMP-2 (pro-gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis. J Cell Sci. 1996;109(Pt 5):953–9.PubMed Kinoh H, Sato H, Tsunezuka Y, et al. MT-MMP, the cell surface activator of proMMP-2 (pro-gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis. J Cell Sci. 1996;109(Pt 5):953–9.PubMed
53.
go back to reference Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37.PubMedCrossRef Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37.PubMedCrossRef
54.
go back to reference Cole BJ, Gomoll AH, Yanke A, et al. Biocampatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol arthrosc. 2007;15(5):632–7.PubMedCrossRef Cole BJ, Gomoll AH, Yanke A, et al. Biocampatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol arthrosc. 2007;15(5):632–7.PubMedCrossRef
55.
go back to reference Losi P, Munao A, Spiller D, et al. Evaluation of a new composite pros-thesis for the repai of abdominal wall defects. J Mater Sci Mater Med. 2007;18(10):1939–44.PubMedCrossRef Losi P, Munao A, Spiller D, et al. Evaluation of a new composite pros-thesis for the repai of abdominal wall defects. J Mater Sci Mater Med. 2007;18(10):1939–44.PubMedCrossRef
56.
go back to reference Ishii Y, Sakamoto S, Kronengold RT, et al. a novel bioengineered small-caliber vascular graft incorpoarating heparin and sirolimus: excellent 6-month patency. J Thorac Cardiovasc Surg. 2008;135(6):1237–45.PubMedCrossRef Ishii Y, Sakamoto S, Kronengold RT, et al. a novel bioengineered small-caliber vascular graft incorpoarating heparin and sirolimus: excellent 6-month patency. J Thorac Cardiovasc Surg. 2008;135(6):1237–45.PubMedCrossRef
57.
go back to reference Santoni BG, McGilvray KC, Lyons AS, Bansal M, Turner AS, Macgillivray JD, et al. Biomechanical analysis of an ovine rotator cuff repair via porous patch augmentation in a chronic rupture model. Am J Sports Med. 2010;38(4):679–86.PubMedCrossRef Santoni BG, McGilvray KC, Lyons AS, Bansal M, Turner AS, Macgillivray JD, et al. Biomechanical analysis of an ovine rotator cuff repair via porous patch augmentation in a chronic rupture model. Am J Sports Med. 2010;38(4):679–86.PubMedCrossRef
58.
go back to reference Aoki M, Miyamoto S, Okamura K, Yamashita T, Ikada Y, Matsuda S. Tensile properties and biological response of poly(L-lactic acid) felt graft: an experimental trial for rotator-cuff reconstruction. J Biomed Mater Res B Appl Biomater. 2004;71:252–9.PubMedCrossRef Aoki M, Miyamoto S, Okamura K, Yamashita T, Ikada Y, Matsuda S. Tensile properties and biological response of poly(L-lactic acid) felt graft: an experimental trial for rotator-cuff reconstruction. J Biomed Mater Res B Appl Biomater. 2004;71:252–9.PubMedCrossRef
59.
go back to reference Koh JL, Szomor Z, Murrell GA, Warren RF. Supplementation of rotator cuff repair with a bioresorbable scaffold. Am J Sports Med. 2002;30:410–3.PubMed Koh JL, Szomor Z, Murrell GA, Warren RF. Supplementation of rotator cuff repair with a bioresorbable scaffold. Am J Sports Med. 2002;30:410–3.PubMed
60.
go back to reference MacGillivray JD, Fealy S, Terry MA, Koh JL, Nixon AJ, Warren RF. Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats. J Shoulder Elbow Surg. 2006;15:639–44.PubMedCrossRef MacGillivray JD, Fealy S, Terry MA, Koh JL, Nixon AJ, Warren RF. Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats. J Shoulder Elbow Surg. 2006;15:639–44.PubMedCrossRef
61.
go back to reference Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg Am. 2009;91(5):1159–71.PubMedCrossRef Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg Am. 2009;91(5):1159–71.PubMedCrossRef
62.
go back to reference Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077.PubMedCrossRef Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077.PubMedCrossRef
63.
go back to reference Garreta E, Gasset D, Semino C, Borros S. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol Eng. 2007;24:75.PubMedCrossRef Garreta E, Gasset D, Semino C, Borros S. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol Eng. 2007;24:75.PubMedCrossRef
64.
go back to reference Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28:1967.PubMedCrossRef Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28:1967.PubMedCrossRef
65.
go back to reference Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res. 2007;25:1018.PubMedCrossRef Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res. 2007;25:1018.PubMedCrossRef
66.
go back to reference Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in threedimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A. 2003;67:1105.PubMedCrossRef Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in threedimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A. 2003;67:1105.PubMedCrossRef
67.
go back to reference Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261.PubMedCrossRef Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26:1261.PubMedCrossRef
68.
go back to reference Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27:5681.PubMedCrossRef Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27:5681.PubMedCrossRef
69.
go back to reference Moffat KL, Kwei AS, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009;15(1):115–26.PubMedCrossRef Moffat KL, Kwei AS, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009;15(1):115–26.PubMedCrossRef
70.
go back to reference Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed. 1998;9:863–78.PubMedCrossRef Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed. 1998;9:863–78.PubMedCrossRef
71.
go back to reference McPherson TB, Liang H, Record RD, Badylak SF. Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng. 2000;6:233–9.PubMedCrossRef McPherson TB, Liang H, Record RD, Badylak SF. Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng. 2000;6:233–9.PubMedCrossRef
72.
go back to reference • Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006 Jun;88(6):1238-44. One of few randomized controlled trials in humans assessing augmentation of rotator cuff healing with xenograft.PubMedCrossRef • Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006 Jun;88(6):1238-44. One of few randomized controlled trials in humans assessing augmentation of rotator cuff healing with xenograft.PubMedCrossRef
73.
go back to reference Malcarney HL, Bonar F, Murrell GA. Early inflammatory reaction after rotator cuff repair with a porcine submucosa implant: a report of 4 cases. Am J Sports Med. 2005;33:907–11.PubMedCrossRef Malcarney HL, Bonar F, Murrell GA. Early inflammatory reaction after rotator cuff repair with a porcine submucosa implant: a report of 4 cases. Am J Sports Med. 2005;33:907–11.PubMedCrossRef
74.
go back to reference Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009;152:135–9.PubMedCrossRef Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009;152:135–9.PubMedCrossRef
75.
go back to reference Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9S.PubMedCrossRef Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9S.PubMedCrossRef
76.
go back to reference Phipatanakul WP, Petersen SA. Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears. Am J Orthop. 2009;38(11):572–5.PubMed Phipatanakul WP, Petersen SA. Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears. Am J Orthop. 2009;38(11):572–5.PubMed
77.
go back to reference Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg. 2009;18(2):288–95.PubMedCrossRef Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg. 2009;18(2):288–95.PubMedCrossRef
78.
go back to reference Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.PubMedCrossRef Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H. The effects of fibroblast growth factor-2 on rotator cuff reconstruction with acellular dermal matrix grafts. Arthroscopy. 2009;25(6):608–16.PubMedCrossRef
79.
go back to reference Wong I, Burns J, Snyder S. Arthroscopic GraftJacket repair of rotator cuff tears. J Shoulder Elbow Surg. 2010;19(2 Suppl):104–9.PubMedCrossRef Wong I, Burns J, Snyder S. Arthroscopic GraftJacket repair of rotator cuff tears. J Shoulder Elbow Surg. 2010;19(2 Suppl):104–9.PubMedCrossRef
80.
go back to reference Gamradt SC, Rodeo SA, Warren RF. Platelet rich plasma in rotator cuff repair. Techniques in Orthopedics. 2007;22(1):26–33.CrossRef Gamradt SC, Rodeo SA, Warren RF. Platelet rich plasma in rotator cuff repair. Techniques in Orthopedics. 2007;22(1):26–33.CrossRef
81.
go back to reference Kon E, Filardo G, Delcogliano M, et al. Platelet-rich plasma: new clinical application: a pilot study for treatment of jumper’s knee. Injury. 2009;40:598–603.PubMedCrossRef Kon E, Filardo G, Delcogliano M, et al. Platelet-rich plasma: new clinical application: a pilot study for treatment of jumper’s knee. Injury. 2009;40:598–603.PubMedCrossRef
82.
go back to reference Orrego M, Larrain C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24:1373–80.PubMedCrossRef Orrego M, Larrain C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24:1373–80.PubMedCrossRef
83.
go back to reference • Randelli P, Arrigone P, Ragone V, Aliprandi A, Cabitza P. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. Journal of Shoulder and Elbow Surgery 2011, 20: 518–528. A prospective randomized controlled trial in humans evaluating platelet-rich plasma after rotator cuff repair.PubMedCrossRef • Randelli P, Arrigone P, Ragone V, Aliprandi A, Cabitza P. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. Journal of Shoulder and Elbow Surgery 2011, 20: 518–528. A prospective randomized controlled trial in humans evaluating platelet-rich plasma after rotator cuff repair.PubMedCrossRef
84.
go back to reference • Castricini R, Longo UG, De Benedetto M, Panfoli N, Pirani P, Zini R, Maffulli N, Denaro V. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011 Feb;39(2):258–265. A prospective randomized controlled trial in humans evaluating platelet-rich plasma after rotator cuff repair.PubMedCrossRef • Castricini R, Longo UG, De Benedetto M, Panfoli N, Pirani P, Zini R, Maffulli N, Denaro V. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011 Feb;39(2):258–265. A prospective randomized controlled trial in humans evaluating platelet-rich plasma after rotator cuff repair.PubMedCrossRef
85.
go back to reference Rodeo SA, Delos D, The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Williams RJ, Adler R, Pearle AD, Warren RF. AOSSM Specialty Day 2011. Rodeo SA, Delos D, The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Williams RJ, Adler R, Pearle AD, Warren RF. AOSSM Specialty Day 2011.
Metadata
Title
Biologic augmentation of rotator cuff repair
Authors
Scott R. Montgomery
Frank A. Petrigliano
Seth C. Gamradt
Publication date
01-12-2011
Publisher
Current Science Inc.
Published in
Current Reviews in Musculoskeletal Medicine / Issue 4/2011
Electronic ISSN: 1935-9748
DOI
https://doi.org/10.1007/s12178-011-9095-6

Other articles of this Issue 4/2011

Current Reviews in Musculoskeletal Medicine 4/2011 Go to the issue

Spine (Matthew Cunningham, Section Editor)

Cervical spine: degenerative conditions

Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)

The glenoid in total shoulder arthroplasty

Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)

Reverse shoulder arthroplasty

Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)

Anterior shoulder instability: a review of pathoanatomy, diagnosis and treatment

Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)

Treatment of irreparable rotator cuff tears

Modern Techniques in Shoulder Surgery (Lawrence V. Gulotta, Section Editor)

Proximal humeral fractures