Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

Authors: Tseng-Hsi Lin, Hsing-Chun Kuo, Fen-Pi Chou, Fung-Jou Lu

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Arsenic trioxide (As2O3) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As2O3-mediated inhibition of cancer cell migration using rat and human glioma cell lines.

Methods

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As2O3 or berberine, and after co-treatment with As2O3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As2O3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As2O3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA.

Results

The cell viability studies demonstrated that berberine enhances As2O3-mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As2O3. The latter effect was even more pronounced in the presence of 10 μM berberine. The As2O3-mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As2O3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also significantly reduced.

Conclusion

Upon co-treatment of glioma cells with As2O3 and berberine, cancer cell metastasis can be significantly inhibited, most likely by blocking the PKC-mediated signaling pathway involved in cancer cell migration. This study is potentially interesting for the development of novel chemotherapeutic approaches in the treatment of malignant gliomas and cancer development in general.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rego EM, He LZ, Warrell RP, Wang ZG, Pandolfi PP: Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA. 2000, 97: 10173-10178. 10.1073/pnas.180290497.CrossRefPubMedPubMedCentral Rego EM, He LZ, Warrell RP, Wang ZG, Pandolfi PP: Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA. 2000, 97: 10173-10178. 10.1073/pnas.180290497.CrossRefPubMedPubMedCentral
2.
go back to reference Wang ZY: Arsenic compounds as anticancer agents. Cancer Chemother Pharmacol. 2001, 48 (Suppl 1): S72-76. 10.1007/s002800100309.CrossRefPubMed Wang ZY: Arsenic compounds as anticancer agents. Cancer Chemother Pharmacol. 2001, 48 (Suppl 1): S72-76. 10.1007/s002800100309.CrossRefPubMed
3.
go back to reference Bachleitner-Hofmann T, Kees M, Gisslinger H: Arsenic trioxide: acute promyelocytic leukemia and beyond. Leuk Lymphoma. 2002, 43: 1535-1540. 10.1080/1042819021000002857.CrossRefPubMed Bachleitner-Hofmann T, Kees M, Gisslinger H: Arsenic trioxide: acute promyelocytic leukemia and beyond. Leuk Lymphoma. 2002, 43: 1535-1540. 10.1080/1042819021000002857.CrossRefPubMed
4.
go back to reference Miller WH, Schipper HM, Lee JS, Singer J, Waxman S: Mechanisms of action of arsenic trioxide. Cancer Res. 2002, 62: 3893-3903.PubMed Miller WH, Schipper HM, Lee JS, Singer J, Waxman S: Mechanisms of action of arsenic trioxide. Cancer Res. 2002, 62: 3893-3903.PubMed
5.
go back to reference Berenson JR, Yeh HS: Arsenic compounds in the treatment of multiple myeloma: a new role for a historical remedy. Clin Lymphoma Myeloma. 2006, 7: 192-198.CrossRefPubMed Berenson JR, Yeh HS: Arsenic compounds in the treatment of multiple myeloma: a new role for a historical remedy. Clin Lymphoma Myeloma. 2006, 7: 192-198.CrossRefPubMed
6.
go back to reference Li YM, Broome JD: Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res. 1999, 59: 776-780.PubMed Li YM, Broome JD: Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res. 1999, 59: 776-780.PubMed
7.
go back to reference Akao Y, Yamada H, Nakagawa Y: Arsenic-induced apoptosis in malignant cells in vitro. Leuk Lymphoma. 2000, 37: 53-63.CrossRefPubMed Akao Y, Yamada H, Nakagawa Y: Arsenic-induced apoptosis in malignant cells in vitro. Leuk Lymphoma. 2000, 37: 53-63.CrossRefPubMed
8.
go back to reference Murgo AJ: Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist. 2001, 6 (Suppl 2): 22-28. 10.1634/theoncologist.6-suppl_2-22.CrossRefPubMed Murgo AJ: Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist. 2001, 6 (Suppl 2): 22-28. 10.1634/theoncologist.6-suppl_2-22.CrossRefPubMed
9.
go back to reference Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z: Arsenic trioxide, a therapeutic agent for APL. Oncogene. 2001, 20: 7146-7153. 10.1038/sj.onc.1204762.CrossRefPubMed Zhang TD, Chen GQ, Wang ZG, Wang ZY, Chen SJ, Chen Z: Arsenic trioxide, a therapeutic agent for APL. Oncogene. 2001, 20: 7146-7153. 10.1038/sj.onc.1204762.CrossRefPubMed
10.
go back to reference Bode AM, Dong Z: The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit Rev Oncol Hematol. 2002, 42: 5-24. 10.1016/S1040-8428(01)00215-3.CrossRefPubMed Bode AM, Dong Z: The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit Rev Oncol Hematol. 2002, 42: 5-24. 10.1016/S1040-8428(01)00215-3.CrossRefPubMed
11.
go back to reference Chen Z, Chen GQ, Shen ZX, Sun GL, Tong JH, Wang ZY, Chen SJ: Expanding the use of arsenic trioxide: leukemias and beyond. Semin Hematol. 2002, 39: 22-26. 10.1053/shem.2002.33611.CrossRefPubMed Chen Z, Chen GQ, Shen ZX, Sun GL, Tong JH, Wang ZY, Chen SJ: Expanding the use of arsenic trioxide: leukemias and beyond. Semin Hematol. 2002, 39: 22-26. 10.1053/shem.2002.33611.CrossRefPubMed
12.
go back to reference Halicka HD, Smolewski P, Darzynkiewicz Z, Dai W, Traganos F: Arsenic trioxide arrests cells early in mitosis leading to apoptosis. Cell Cycle. 2002, 1: 201-209.CrossRefPubMed Halicka HD, Smolewski P, Darzynkiewicz Z, Dai W, Traganos F: Arsenic trioxide arrests cells early in mitosis leading to apoptosis. Cell Cycle. 2002, 1: 201-209.CrossRefPubMed
13.
go back to reference Wei LH, Lai KP, Chen CA, Cheng CH, Huang YJ, Chou CH, Kuo ML, Hsieh CY: Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene. 2005, 24: 390-398. 10.1038/sj.onc.1208192.CrossRefPubMed Wei LH, Lai KP, Chen CA, Cheng CH, Huang YJ, Chou CH, Kuo ML, Hsieh CY: Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene. 2005, 24: 390-398. 10.1038/sj.onc.1208192.CrossRefPubMed
14.
go back to reference Cheung WMW, Chu PWK, Kwong YL: Effects of arsenic trioxide on the cellular proliferation, apopsosis and differentiation of human neuroblastoma cells. Cancer Lett. 2007, 246: 122-128. 10.1016/j.canlet.2006.02.009.CrossRefPubMed Cheung WMW, Chu PWK, Kwong YL: Effects of arsenic trioxide on the cellular proliferation, apopsosis and differentiation of human neuroblastoma cells. Cancer Lett. 2007, 246: 122-128. 10.1016/j.canlet.2006.02.009.CrossRefPubMed
16.
go back to reference Couldwell WT, Antel JP, Yong VW: Protein kinase C activity correlates with the growth rate of malignant gliomas: Part II. Effects of glioma mitogens and modulators of protein kinase C. Neurosurgery. 1992, 31: 717-724. 10.1097/00006123-199210000-00015.CrossRefPubMed Couldwell WT, Antel JP, Yong VW: Protein kinase C activity correlates with the growth rate of malignant gliomas: Part II. Effects of glioma mitogens and modulators of protein kinase C. Neurosurgery. 1992, 31: 717-724. 10.1097/00006123-199210000-00015.CrossRefPubMed
17.
go back to reference da Rocha AB, Mans DR, Bernard EA, Ruschel C, Logullo AF, Wetmore LA, Leyva A, Schwartsmann G: Tamoxifen inhibits particulate-associated protein kinase C activity, and sensitises cultured human glioblastoma cells not to etoposide but to gamma-radiation and BCNU. Eur J Cancer. 1999, 35: 833-839. 10.1016/S0959-8049(99)00003-9.CrossRefPubMed da Rocha AB, Mans DR, Bernard EA, Ruschel C, Logullo AF, Wetmore LA, Leyva A, Schwartsmann G: Tamoxifen inhibits particulate-associated protein kinase C activity, and sensitises cultured human glioblastoma cells not to etoposide but to gamma-radiation and BCNU. Eur J Cancer. 1999, 35: 833-839. 10.1016/S0959-8049(99)00003-9.CrossRefPubMed
18.
go back to reference Hofmann J: Protein kinase C isozymes as potential targets for anticancer therapy. Curr Cancer Drug Targets. 2004, 4: 125-146. 10.2174/1568009043481579.CrossRefPubMed Hofmann J: Protein kinase C isozymes as potential targets for anticancer therapy. Curr Cancer Drug Targets. 2004, 4: 125-146. 10.2174/1568009043481579.CrossRefPubMed
19.
go back to reference Mackay HJ, Twelves CJ: Protein kinase C: a target for anticancer drugs?. Endocr Relat Cancer. 2003, 10: 389-396. 10.1677/erc.0.0100389.CrossRefPubMed Mackay HJ, Twelves CJ: Protein kinase C: a target for anticancer drugs?. Endocr Relat Cancer. 2003, 10: 389-396. 10.1677/erc.0.0100389.CrossRefPubMed
20.
go back to reference Cho K-K, Mikkelsen T, Lee YJ, Jiang F, Chopp M, Rosenblum ML: The role of protein kinase Cα in U-87 glioma invasion. Int J Devl Neuroscience. 1999, 17 (5–6): 447-461. 10.1016/S0736-5748(99)00054-4.CrossRef Cho K-K, Mikkelsen T, Lee YJ, Jiang F, Chopp M, Rosenblum ML: The role of protein kinase Cα in U-87 glioma invasion. Int J Devl Neuroscience. 1999, 17 (5–6): 447-461. 10.1016/S0736-5748(99)00054-4.CrossRef
21.
go back to reference Lahn MM, Sundell KL, Paterson BM: The role of protein kinase C-α in malignancies of the nervous system and implications for the clinical development of the specific PKC-α inhibitor apprinocarsen. Oncol Rep. 2004, 11: 515-522.PubMed Lahn MM, Sundell KL, Paterson BM: The role of protein kinase C-α in malignancies of the nervous system and implications for the clinical development of the specific PKC-α inhibitor apprinocarsen. Oncol Rep. 2004, 11: 515-522.PubMed
22.
go back to reference Zhang W, Law RE, Hinton DR, Couldwell WT: Inhibition of human malignant glioma cell motility and invasion in vitro by hypericin, a potent protein kinase C inhibitor. Cancer Lett. 1997, 120: 31-38. 10.1016/S0304-3835(97)00287-5.CrossRefPubMed Zhang W, Law RE, Hinton DR, Couldwell WT: Inhibition of human malignant glioma cell motility and invasion in vitro by hypericin, a potent protein kinase C inhibitor. Cancer Lett. 1997, 120: 31-38. 10.1016/S0304-3835(97)00287-5.CrossRefPubMed
23.
go back to reference Masur K, Lang K, Niggemann B, Zanker KS, Entschladen F: High PKC α and low E-cadherin expression contribute to high migration activity of colon carcinoma cells. Mol Biol Cell. 2001, 12: 1973-1982.CrossRefPubMedPubMedCentral Masur K, Lang K, Niggemann B, Zanker KS, Entschladen F: High PKC α and low E-cadherin expression contribute to high migration activity of colon carcinoma cells. Mol Biol Cell. 2001, 12: 1973-1982.CrossRefPubMedPubMedCentral
24.
go back to reference Serova M, Ghoul A, Benhadji KA, Cvitkovic E, Faivre S, Calvo F, Lokiec F, Raymond E: Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol. 2006, 33: 466-478. 10.1053/j.seminoncol.2006.04.009.CrossRefPubMed Serova M, Ghoul A, Benhadji KA, Cvitkovic E, Faivre S, Calvo F, Lokiec F, Raymond E: Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol. 2006, 33: 466-478. 10.1053/j.seminoncol.2006.04.009.CrossRefPubMed
25.
go back to reference Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J: Protein kinase C α/β inhibitor Go6976 promotes formation of cell junctions and inhibits invation of urinary bladder carcinoma cells. Cancer Res. 2004, 64: 5693-5701. 10.1158/0008-5472.CAN-03-3511.CrossRefPubMed Koivunen J, Aaltonen V, Koskela S, Lehenkari P, Laato M, Peltonen J: Protein kinase C α/β inhibitor Go6976 promotes formation of cell junctions and inhibits invation of urinary bladder carcinoma cells. Cancer Res. 2004, 64: 5693-5701. 10.1158/0008-5472.CAN-03-3511.CrossRefPubMed
26.
go back to reference Roychowdhury D, Lahn M: Antisense therapy directed to protein kinase C-alpha (Affinitak, LY900003/ISIS 3521): potential role in breast cancer. Semin Oncol. 2003, 30: 30-33.CrossRefPubMed Roychowdhury D, Lahn M: Antisense therapy directed to protein kinase C-alpha (Affinitak, LY900003/ISIS 3521): potential role in breast cancer. Semin Oncol. 2003, 30: 30-33.CrossRefPubMed
27.
go back to reference Rao JS: Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003, 3: 489-501. 10.1038/nrc1121.CrossRefPubMed Rao JS: Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003, 3: 489-501. 10.1038/nrc1121.CrossRefPubMed
28.
go back to reference Sounni NE, Noel A: Membrane type-matrix metalloproteinases and tumor progression. Biochimie. 2005, 87: 329-342. 10.1016/j.biochi.2004.07.012.CrossRefPubMed Sounni NE, Noel A: Membrane type-matrix metalloproteinases and tumor progression. Biochimie. 2005, 87: 329-342. 10.1016/j.biochi.2004.07.012.CrossRefPubMed
29.
go back to reference Uhm JH, Dooley NP, Villemure J-G, Yong VW: Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis. 1996, 14: 421-433. 10.1007/BF00128958.CrossRefPubMed Uhm JH, Dooley NP, Villemure J-G, Yong VW: Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis. 1996, 14: 421-433. 10.1007/BF00128958.CrossRefPubMed
30.
go back to reference Park M-J, Park I-C, Hur J-H, Rhee C-H, Choe T-B, Yi D-H, Hong S-I, Lee S-H: Protein kinase C activation by phorbol ester increases in vitro invasion through regulation of matrix metalloproteinases/tissue inhibitors of metalloproteinases system in D54 human glioblastoma cells. Neuroscience Lett. 2000, 290 (3): 201-204. 10.1016/S0304-3940(00)01358-6.CrossRef Park M-J, Park I-C, Hur J-H, Rhee C-H, Choe T-B, Yi D-H, Hong S-I, Lee S-H: Protein kinase C activation by phorbol ester increases in vitro invasion through regulation of matrix metalloproteinases/tissue inhibitors of metalloproteinases system in D54 human glioblastoma cells. Neuroscience Lett. 2000, 290 (3): 201-204. 10.1016/S0304-3940(00)01358-6.CrossRef
31.
go back to reference Schiller LR: Review article: anti-diarrhoeal pharmacology and therapeutics. Aliment Pharmacol Ther. 1995, 9: 87-106.PubMed Schiller LR: Review article: anti-diarrhoeal pharmacology and therapeutics. Aliment Pharmacol Ther. 1995, 9: 87-106.PubMed
32.
go back to reference Hwang JM, Kuo HC, Tseng TH, Liu JY, Chu CY: Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol. 2006, 80: 62-73. 10.1007/s00204-005-0014-8.CrossRefPubMed Hwang JM, Kuo HC, Tseng TH, Liu JY, Chu CY: Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol. 2006, 80: 62-73. 10.1007/s00204-005-0014-8.CrossRefPubMed
33.
go back to reference Anis KV, Rajeshkumar NV, Kuttan R: Inhibition of chemical carcinogenesis by berberine in rats and mice. J Pharmacy Pharmacol. 2001, 53 (5): 763-768. 10.1211/0022357011775901.CrossRef Anis KV, Rajeshkumar NV, Kuttan R: Inhibition of chemical carcinogenesis by berberine in rats and mice. J Pharmacy Pharmacol. 2001, 53 (5): 763-768. 10.1211/0022357011775901.CrossRef
34.
go back to reference Kuo CL, Chi CW, Liu TY: The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004, 203: 127-137. 10.1016/j.canlet.2003.09.002.CrossRefPubMed Kuo CL, Chi CW, Liu TY: The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004, 203: 127-137. 10.1016/j.canlet.2003.09.002.CrossRefPubMed
35.
go back to reference Yount G, Qian Y, Moore D, Basila D, West J, Aldape K, Arvold N, Shalev N, Haas-Kogan D: Berberine sensitizes human glioma cells, but not normal glial cells, to ionizing radiation in vitro. J Exp Therapeutics Oncol. 2004, 4: 137-143. Yount G, Qian Y, Moore D, Basila D, West J, Aldape K, Arvold N, Shalev N, Haas-Kogan D: Berberine sensitizes human glioma cells, but not normal glial cells, to ionizing radiation in vitro. J Exp Therapeutics Oncol. 2004, 4: 137-143.
36.
go back to reference Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP: Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol. 2006, 214: 8-15. 10.1016/j.taap.2005.11.010.CrossRefPubMed Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP: Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol. 2006, 214: 8-15. 10.1016/j.taap.2005.11.010.CrossRefPubMed
37.
go back to reference Letašiová S, Jantová S, Čipák L, Mučková M: Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett. 2006, 239: 254-262. 10.1016/j.canlet.2005.08.024.CrossRefPubMed Letašiová S, Jantová S, Čipák L, Mučková M: Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett. 2006, 239: 254-262. 10.1016/j.canlet.2005.08.024.CrossRefPubMed
38.
go back to reference Mantena SK, Sharma SD, Katiyar SK: Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis. 2006, 27: 2018-2027. 10.1093/carcin/bgl043.CrossRefPubMed Mantena SK, Sharma SD, Katiyar SK: Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis. 2006, 27: 2018-2027. 10.1093/carcin/bgl043.CrossRefPubMed
39.
go back to reference Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S: Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999, 94: 2102-2111.PubMed Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S: Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999, 94: 2102-2111.PubMed
40.
go back to reference Benda P, Lightbody J, Sato G, Levine L, Sweet W: Differentiated rat glial cell strain in culture. Science. 1968, 161: 370-371. 10.1126/science.161.3839.370.CrossRefPubMed Benda P, Lightbody J, Sato G, Levine L, Sweet W: Differentiated rat glial cell strain in culture. Science. 1968, 161: 370-371. 10.1126/science.161.3839.370.CrossRefPubMed
41.
go back to reference Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.CrossRefPubMed Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.CrossRefPubMed
42.
go back to reference Kuo HC, Kuo WH, Lee YJ, Lin WL, Chou FP, Tseng TH: Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett. 2006, 234: 199-208. 10.1016/j.canlet.2005.03.046.CrossRefPubMed Kuo HC, Kuo WH, Lee YJ, Lin WL, Chou FP, Tseng TH: Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett. 2006, 234: 199-208. 10.1016/j.canlet.2005.03.046.CrossRefPubMed
43.
go back to reference Kuo HC, Lee HJ, Hu CC, Shun HI, Tseng TH: Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells. Toxicol Appl Pharmacol. 2006, 210: 55-62. 10.1016/j.taap.2005.06.020.CrossRefPubMed Kuo HC, Lee HJ, Hu CC, Shun HI, Tseng TH: Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells. Toxicol Appl Pharmacol. 2006, 210: 55-62. 10.1016/j.taap.2005.06.020.CrossRefPubMed
44.
go back to reference Pervaiz S: Anti-cancer drugs of today and tomorrow: are we close to making the turn from treating to curing cancer?. Curr Pharm Des. 2002, 8: 1723-1734. 10.2174/1381612023394025.CrossRefPubMed Pervaiz S: Anti-cancer drugs of today and tomorrow: are we close to making the turn from treating to curing cancer?. Curr Pharm Des. 2002, 8: 1723-1734. 10.2174/1381612023394025.CrossRefPubMed
45.
go back to reference Larsson C: Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 2006, 18: 276-284. 10.1016/j.cellsig.2005.07.010.CrossRefPubMed Larsson C: Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 2006, 18: 276-284. 10.1016/j.cellsig.2005.07.010.CrossRefPubMed
46.
go back to reference Sharif TR, Sharif M: Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999, 15: 237-243.PubMed Sharif TR, Sharif M: Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999, 15: 237-243.PubMed
47.
go back to reference Assert R, Kotter R, Bisping G, Scheppach W, Stahlnecker E, Muller KM, Dusel G, Schatz H, Pfeiffer A: Anti-proliferative activity of protein kinase C in apical compartments of human colonic crypts: evidence for a less activated protein kinase C in small adenomas. Int J Cancer. 1999, 80: 47-53. 10.1002/(SICI)1097-0215(19990105)80:1<47::AID-IJC10>3.0.CO;2-J.CrossRefPubMed Assert R, Kotter R, Bisping G, Scheppach W, Stahlnecker E, Muller KM, Dusel G, Schatz H, Pfeiffer A: Anti-proliferative activity of protein kinase C in apical compartments of human colonic crypts: evidence for a less activated protein kinase C in small adenomas. Int J Cancer. 1999, 80: 47-53. 10.1002/(SICI)1097-0215(19990105)80:1<47::AID-IJC10>3.0.CO;2-J.CrossRefPubMed
48.
go back to reference da Rocha AB, Mans DR, Regner A, Schwartsmann G: Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas?. Oncologist. 2002, 7: 17-33. 10.1634/theoncologist.7-1-17.CrossRefPubMed da Rocha AB, Mans DR, Regner A, Schwartsmann G: Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas?. Oncologist. 2002, 7: 17-33. 10.1634/theoncologist.7-1-17.CrossRefPubMed
49.
go back to reference Seger R, Krebs EG: The MAPK signaling cascade. FASEB J. 1995, 9: 726-735.PubMed Seger R, Krebs EG: The MAPK signaling cascade. FASEB J. 1995, 9: 726-735.PubMed
50.
go back to reference Schonwasser DC, Marais RM, Marshall CJ, Parker PJ: Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998, 18: 790-798.CrossRefPubMedPubMedCentral Schonwasser DC, Marais RM, Marshall CJ, Parker PJ: Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998, 18: 790-798.CrossRefPubMedPubMedCentral
51.
go back to reference Auvinen M: Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase and polyamines?. J Natl Cancer Inst. 1997, 89: 533-537. 10.1093/jnci/89.8.533.CrossRefPubMed Auvinen M: Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase and polyamines?. J Natl Cancer Inst. 1997, 89: 533-537. 10.1093/jnci/89.8.533.CrossRefPubMed
52.
go back to reference Lau CW, Yao XQ, Chen ZY, Ko WH, Huang Y: Cardiovascular actions of berberine. Cardiovasc Drug Rev. 2001, 19: 234-244.CrossRefPubMed Lau CW, Yao XQ, Chen ZY, Ko WH, Huang Y: Cardiovascular actions of berberine. Cardiovasc Drug Rev. 2001, 19: 234-244.CrossRefPubMed
53.
go back to reference Hwang JM, Wang CJ, Chou FP, Tseng TH, Hsieh YS, Lin WL, Chu CY: Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage. Arch Toxicol. 2002, 76: 664-670. 10.1007/s00204-002-0351-9.CrossRefPubMed Hwang JM, Wang CJ, Chou FP, Tseng TH, Hsieh YS, Lin WL, Chu CY: Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage. Arch Toxicol. 2002, 76: 664-670. 10.1007/s00204-002-0351-9.CrossRefPubMed
54.
go back to reference Bode AM, Dong Z: Apoptosis induction by arsenic: mechanisms of action and possible clinical applications for treating therapy-resistant cancers. Drug Resist Update. 2000, 3 (1): 21-29. 10.1054/drup.2000.0114.CrossRef Bode AM, Dong Z: Apoptosis induction by arsenic: mechanisms of action and possible clinical applications for treating therapy-resistant cancers. Drug Resist Update. 2000, 3 (1): 21-29. 10.1054/drup.2000.0114.CrossRef
55.
go back to reference Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L, Huang Y, Zhang JW, Xiong SM, Chen SJ, Wang ZY, Chen Z, Chen GQ: Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia. 2000, 14: 262-270. 10.1038/sj.leu.2401650.CrossRefPubMed Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L, Huang Y, Zhang JW, Xiong SM, Chen SJ, Wang ZY, Chen Z, Chen GQ: Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia. 2000, 14: 262-270. 10.1038/sj.leu.2401650.CrossRefPubMed
56.
go back to reference Levicar N, Nuttall RK, Lah TT: Proteases in brain tumour progression. Acta Neurochir (Wien). 2003, 145: 825-838. 10.1007/s00701-003-0097-z.CrossRef Levicar N, Nuttall RK, Lah TT: Proteases in brain tumour progression. Acta Neurochir (Wien). 2003, 145: 825-838. 10.1007/s00701-003-0097-z.CrossRef
57.
go back to reference Bredel M, Pollack IF: The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir (Wien). 1997, 139: 1000-1013. 10.1007/BF01411552.CrossRef Bredel M, Pollack IF: The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir (Wien). 1997, 139: 1000-1013. 10.1007/BF01411552.CrossRef
58.
go back to reference Mandil R, Ashkenazi E, Blass M, Kronfeld I, Kazimirsky G, Rosenthal G, Umansky F, Lorenzo PS, Blumberg PM, Brodie C: Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res. 2001, 61: 4612-4619.PubMed Mandil R, Ashkenazi E, Blass M, Kronfeld I, Kazimirsky G, Rosenthal G, Umansky F, Lorenzo PS, Blumberg PM, Brodie C: Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res. 2001, 61: 4612-4619.PubMed
60.
go back to reference Chen NY, Ma WY, Huang C, Ding M, Dong Z: Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol. 2000, 19: 297-305.PubMed Chen NY, Ma WY, Huang C, Ding M, Dong Z: Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol. 2000, 19: 297-305.PubMed
61.
go back to reference Au WY, Tam S, Fong BM, Kwong YL: Elemental arsenic entered the cerebrospinal fluid during oral arsenic trioxide treatment of meningeal relapse of acute promyelocytic leukemia. Blood. 2006, 107: 3012-3013. 10.1182/blood-2005-10-4175.CrossRefPubMed Au WY, Tam S, Fong BM, Kwong YL: Elemental arsenic entered the cerebrospinal fluid during oral arsenic trioxide treatment of meningeal relapse of acute promyelocytic leukemia. Blood. 2006, 107: 3012-3013. 10.1182/blood-2005-10-4175.CrossRefPubMed
Metadata
Title
Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide
Authors
Tseng-Hsi Lin
Hsing-Chun Kuo
Fen-Pi Chou
Fung-Jou Lu
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-58

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine