Skip to main content
Top
Published in: European Radiology 12/2019

01-12-2019 | Benign Prostatic Hypertrophy | Urogenital

Dynamic contrast-enhanced MR imaging of the prostate: intraindividual comparison of gadoterate meglumine and gadobutrol

Authors: Chau Hung Lee, Balamurugan Vellayappan, Matthias Taupitz, Bernd Hamm, Patrick Asbach

Published in: European Radiology | Issue 12/2019

Login to get access

Abstract

Objectives

To intraindividually compare the signal-enhancing effect of 0.5 M gadoterate meglumine and 1.0 M gadobutrol in dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging of the prostate.

Methods

Fifty patients who underwent two 3-T MR examinations of the prostate were included in this IRB-approved retrospective uncontrolled, unrandomized study. All received two scans (mean time interval, 20.5 months) including T1-weighted DCE-MR imaging, one with 0.5 M gadoterate meglumine and one with 1.0 M gadobutrol. Equimolar doses of gadolinium (0.1 mmol/kg body weight) were administered with identical injection speed (2 mL/s), resulting in differing gadolinium delivery rate. An identical region of interest (ROItz) within a BPH-node was identified on both scans. The area under the time-enhancement curve of each ROItz from 0 to 180 s post contrast arrival and pharmacokinetic parameters were calculated. Relative enhancement and signal-to-noise (SNR) and contrast-to-noise (CNR) ratios in the delayed phase at about 180 s were compared between both agents.

Results

There was a significantly larger area under the time-enhancement curve (5.53 vs 4.97 p = 0.0007) and higher relative enhancement of BPH nodules (2.23 vs 1.96 p < 0.0001) with gadobutrol compared with gadoterate meglumine. There were no significant differences in SNR (44.55 vs 37.63 p = 0.12), CNR (31.22 vs 26.39 p = 0.18), and pharmacokinetic parameters Ktrans (0.31 vs 0.32 p = 0.86), Ve (1.36 vs 0.98 p = 0.13), and Kep (0.34 vs 0.36 p = 0.12).

Conclusions

At equimolar doses, increased gadolinium delivery over time using gadobutrol provides higher relative enhancement parameters in BPH nodules compared with gadoterate meglumine, but does not translate into improved SNR or CNR.

Key Points

At equal injection rate and equimolar total dose, gadobutrol compared with gadoterate meglumine provides a significantly greater relative enhancement in DCE-MR imaging of BPH over the first 180 s.
There are no significant differences in SNRs, CNRs, and pharmacokinetic parameters between the two GBCAs.
Literature
1.
go back to reference Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167PubMedCrossRef Bellin MF, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167PubMedCrossRef
2.
go back to reference Rohrer M, Bauer H, Mintorovitch J, Reguardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRef Rohrer M, Bauer H, Mintorovitch J, Reguardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRef
3.
go back to reference Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94:1187–1204PubMedCrossRef Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94:1187–1204PubMedCrossRef
4.
go back to reference Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101PubMedCrossRef Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101PubMedCrossRef
5.
go back to reference Attenberger UI, Runge VM, Morelli JN, Williams J, Jackson CB, Michaely HJ (2010) Evaluation of gadobutrol, a macrocyclic, nonionic gadolinium chelate in a brain glioma model: comparison with gadoterate meglumine and gadopentetate dimeglumine at 1.5 T, combined with an assessment of field strength dependence, specifically 1.5 versus 3 T. J Magn Reson Imaging 31:549–555PubMedCrossRef Attenberger UI, Runge VM, Morelli JN, Williams J, Jackson CB, Michaely HJ (2010) Evaluation of gadobutrol, a macrocyclic, nonionic gadolinium chelate in a brain glioma model: comparison with gadoterate meglumine and gadopentetate dimeglumine at 1.5 T, combined with an assessment of field strength dependence, specifically 1.5 versus 3 T. J Magn Reson Imaging 31:549–555PubMedCrossRef
6.
go back to reference Fallenberg EM, Renz DM, Karle B et al (2015) Intraindividual, randomized comparison of the macrocyclic contrast agents gadobutrol and gadoterate meglumine in breast magnetic resonance imaging. Eur Radiol 25:837–849PubMedCrossRef Fallenberg EM, Renz DM, Karle B et al (2015) Intraindividual, randomized comparison of the macrocyclic contrast agents gadobutrol and gadoterate meglumine in breast magnetic resonance imaging. Eur Radiol 25:837–849PubMedCrossRef
7.
go back to reference Durmus T, Vollnberg B, Schwenke C et al (2013) Dynamic contrast enhanced MRI of the prostate: comparison of gadobutrol and Gd-DTPA. Rofo 85:862–868 Durmus T, Vollnberg B, Schwenke C et al (2013) Dynamic contrast enhanced MRI of the prostate: comparison of gadobutrol and Gd-DTPA. Rofo 85:862–868
8.
go back to reference Kulh CK, Mielcarek P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110CrossRef Kulh CK, Mielcarek P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110CrossRef
9.
go back to reference Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedCrossRef Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedCrossRef
10.
go back to reference Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385PubMedCrossRef Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385PubMedCrossRef
11.
go back to reference Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374PubMedCrossRef Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374PubMedCrossRef
12.
go back to reference Prince MR, Lee HG, Lee CH et al (2017) Safety of gadobutrol in over 23,000 patients: the GARDIAN study, a global multicentre, prospective, non-interventional study. Eur Radiol 27:286–295PubMedCrossRef Prince MR, Lee HG, Lee CH et al (2017) Safety of gadobutrol in over 23,000 patients: the GARDIAN study, a global multicentre, prospective, non-interventional study. Eur Radiol 27:286–295PubMedCrossRef
13.
go back to reference Elster AD (1997) How much contrast is enough? Dependence of enhancement on field strength and MR pulse sequence. Eur Radiol 7:S276–S280CrossRef Elster AD (1997) How much contrast is enough? Dependence of enhancement on field strength and MR pulse sequence. Eur Radiol 7:S276–S280CrossRef
14.
go back to reference Anzalone N, Scarabino T, Venturi C et al (2013) Cerebral neoplastic enhancing lesions: multicenter, randomized, crossover intraindividual comparison between gadobutrol (1.0M) and gadoterate meglumine (0.5M) at 0.1 mmol Gd/kg body weight in a clinical setting. Eur J Radiol 82:139–145PubMedCrossRef Anzalone N, Scarabino T, Venturi C et al (2013) Cerebral neoplastic enhancing lesions: multicenter, randomized, crossover intraindividual comparison between gadobutrol (1.0M) and gadoterate meglumine (0.5M) at 0.1 mmol Gd/kg body weight in a clinical setting. Eur J Radiol 82:139–145PubMedCrossRef
15.
go back to reference Maravilla KR, San-Juan D, Kim SJ et al (2017) Comparison of gadoterate meglumine and gadobutrol in the MRI diagnosis of primary brain tumors: a double-blind randomized controlled intraindividual crossover study (the REMIND study). AJNR Am J Neuroradiol 38:1681–1688PubMedCrossRef Maravilla KR, San-Juan D, Kim SJ et al (2017) Comparison of gadoterate meglumine and gadobutrol in the MRI diagnosis of primary brain tumors: a double-blind randomized controlled intraindividual crossover study (the REMIND study). AJNR Am J Neuroradiol 38:1681–1688PubMedCrossRef
16.
go back to reference Saake M, Langner S, Schwenke C et al (2016) MRI in multiple sclerosis: an intra-individual, randomized and multicentric comparison of gadobutrol with gadoterate meglumine at 3 T. Eur Radiol 26:820–828PubMedCrossRef Saake M, Langner S, Schwenke C et al (2016) MRI in multiple sclerosis: an intra-individual, randomized and multicentric comparison of gadobutrol with gadoterate meglumine at 3 T. Eur Radiol 26:820–828PubMedCrossRef
17.
go back to reference Lancelot E, Froehlich J, Heine O, Desché P (2016) Effects of gadolinium-based contrast agent concentrations (0.5 M or 1.0 M) on the diagnostic performance of magnetic resonance imaging examinations: systematic review of the literature. Acta Radiol 57:1334–1343PubMedCrossRef Lancelot E, Froehlich J, Heine O, Desché P (2016) Effects of gadolinium-based contrast agent concentrations (0.5 M or 1.0 M) on the diagnostic performance of magnetic resonance imaging examinations: systematic review of the literature. Acta Radiol 57:1334–1343PubMedCrossRef
18.
go back to reference Haneder S, Attenberger UI, Schoenberg SO, Loewe C, Arnaiz J, Michaely HJ (2012) Comparison of 0.5 M gadoterate and 1.0 M gadobutrol in peripheral MRA: a prospective, single-center, randomized, crossover, double-blind study. J Magn Reson Imaging 36:1213–1221PubMedCrossRef Haneder S, Attenberger UI, Schoenberg SO, Loewe C, Arnaiz J, Michaely HJ (2012) Comparison of 0.5 M gadoterate and 1.0 M gadobutrol in peripheral MRA: a prospective, single-center, randomized, crossover, double-blind study. J Magn Reson Imaging 36:1213–1221PubMedCrossRef
19.
go back to reference Szucs-Farkas Z, Froehlich JM, Ulrich M et al (2008) 1.0-M gadobutrol versus 0.5-M gadoterate for peripheral magnetic resonance angiography: a prospective randomized controlled clinical trial. J Magn Reson Imaging 27:1399–1405PubMedCrossRef Szucs-Farkas Z, Froehlich JM, Ulrich M et al (2008) 1.0-M gadobutrol versus 0.5-M gadoterate for peripheral magnetic resonance angiography: a prospective randomized controlled clinical trial. J Magn Reson Imaging 27:1399–1405PubMedCrossRef
20.
go back to reference Kramer JH, Arnoldi E, François CJ et al (2013) Dynamic and static magnetic resonance angiography of the supra-aortic vessels at 3.0 T: intraindividual comparison of gadobutrol, gadobenate dimeglumine, and gadoterate meglumine at equimolar dose. Invest Radiol 48:121–128PubMedCrossRef Kramer JH, Arnoldi E, François CJ et al (2013) Dynamic and static magnetic resonance angiography of the supra-aortic vessels at 3.0 T: intraindividual comparison of gadobutrol, gadobenate dimeglumine, and gadoterate meglumine at equimolar dose. Invest Radiol 48:121–128PubMedCrossRef
21.
go back to reference Hoelter P, Lang S, Weibart M et al (2017) Prospective intraindividual comparison of gadoterate and gadobutrol for cervical and intracranial contrast-enhanced magnetic resonance angiography. Neuroradiology 59:1233–1239PubMedCrossRef Hoelter P, Lang S, Weibart M et al (2017) Prospective intraindividual comparison of gadoterate and gadobutrol for cervical and intracranial contrast-enhanced magnetic resonance angiography. Neuroradiology 59:1233–1239PubMedCrossRef
22.
go back to reference Loewe C, Arnaiz J, Krause D, Marti-Bonmati L, Haneder S, Kramer U (2015) MR angiography at 3 T of peripheral arterial disease: a randomized prospective comparison of gadoterate meglumine and gadobutrol. AJR Am J Roentgenol 204:1311–1321PubMedCrossRef Loewe C, Arnaiz J, Krause D, Marti-Bonmati L, Haneder S, Kramer U (2015) MR angiography at 3 T of peripheral arterial disease: a randomized prospective comparison of gadoterate meglumine and gadobutrol. AJR Am J Roentgenol 204:1311–1321PubMedCrossRef
23.
go back to reference Renz DM, Durmus T, Böttcher J et al (2014) Comparison of gadoteric acid and gadobutrol for detection as well as morphologic and dynamic characterization of lesions on breast dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 49:474–484PubMedCrossRef Renz DM, Durmus T, Böttcher J et al (2014) Comparison of gadoteric acid and gadobutrol for detection as well as morphologic and dynamic characterization of lesions on breast dynamic contrast-enhanced magnetic resonance imaging. Invest Radiol 49:474–484PubMedCrossRef
24.
go back to reference Pediconi F, Catalano C, Padula S et al (2008) Contrast-enhanced MR mammography: improved lesion detection and differentiation with gadobenate dimeglumine. AJR Am J Roentgenol 191:1339–1346PubMedCrossRef Pediconi F, Catalano C, Padula S et al (2008) Contrast-enhanced MR mammography: improved lesion detection and differentiation with gadobenate dimeglumine. AJR Am J Roentgenol 191:1339–1346PubMedCrossRef
25.
go back to reference Martincich L, Faivre-Pierret M, Zechmann CM et al (2011) Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for breast MR imaging (DETECT trial). Radiology 258:396–408PubMedCrossRef Martincich L, Faivre-Pierret M, Zechmann CM et al (2011) Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for breast MR imaging (DETECT trial). Radiology 258:396–408PubMedCrossRef
26.
go back to reference Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626PubMedCrossRef Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626PubMedCrossRef
27.
go back to reference De Visschere PJL, Vral A, Perletti G et al (2017) Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate. Eur Radiol 27:2095–2109PubMedCrossRef De Visschere PJL, Vral A, Perletti G et al (2017) Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate. Eur Radiol 27:2095–2109PubMedCrossRef
28.
go back to reference Brown DL, Lalla CD, Masselink AJ (2013) AUC versus peak-trough dosing of vancomycin: applying new pharmacokinetic paradigms to an old drug. Ther Drug Monit 35:443–449PubMedCrossRef Brown DL, Lalla CD, Masselink AJ (2013) AUC versus peak-trough dosing of vancomycin: applying new pharmacokinetic paradigms to an old drug. Ther Drug Monit 35:443–449PubMedCrossRef
29.
go back to reference Tombach B, Benner T, Reimer P et al (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226:880–888PubMedCrossRef Tombach B, Benner T, Reimer P et al (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226:880–888PubMedCrossRef
30.
go back to reference Weishaupt D, Köchli VD, Marincek B (2003) Factors affecting the signal-to-noise ratio. In: How does MRI work? Springer, Berlin, pp 31–42CrossRef Weishaupt D, Köchli VD, Marincek B (2003) Factors affecting the signal-to-noise ratio. In: How does MRI work? Springer, Berlin, pp 31–42CrossRef
31.
go back to reference Kim YK, Lee YH, Kim CS, Han YM, Hwang SB (2008) Double-dose 1.0-M gadobutrol versus standard-dose 0.5-M gadopentetate dimeglumine in revealing small hypervascular hepatocellular carcinomas. Eur Radiol 18:70–77PubMedCrossRef Kim YK, Lee YH, Kim CS, Han YM, Hwang SB (2008) Double-dose 1.0-M gadobutrol versus standard-dose 0.5-M gadopentetate dimeglumine in revealing small hypervascular hepatocellular carcinomas. Eur Radiol 18:70–77PubMedCrossRef
32.
go back to reference Pennekamp W, Roggenland D, Hering S et al (2011) Intraindividual, randomised comparison of the MRI contrast agents gadobutrol and gadoterate in imaging the distal lower limb of patients with known or suspected osteomyelitis, evaluated in an off-site blinded read. Eur Radiol 21:1058–1067PubMedCrossRef Pennekamp W, Roggenland D, Hering S et al (2011) Intraindividual, randomised comparison of the MRI contrast agents gadobutrol and gadoterate in imaging the distal lower limb of patients with known or suspected osteomyelitis, evaluated in an off-site blinded read. Eur Radiol 21:1058–1067PubMedCrossRef
33.
go back to reference Escribano F, Sentís M, Oliva JC et al (2018) Dynamic magnetic resonance imaging of the breast: comparison of gadobutrol vs. Gd-DTPA. Radiologia 60:49–56PubMedCrossRef Escribano F, Sentís M, Oliva JC et al (2018) Dynamic magnetic resonance imaging of the breast: comparison of gadobutrol vs. Gd-DTPA. Radiologia 60:49–56PubMedCrossRef
34.
go back to reference Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828 Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43:817–828
35.
go back to reference Gillis A, Gray M, Burstein D (2002) Relaxivity and diffusion of gadolinium agents in cartilage. Magn Reson Med 48:1068–1071PubMedCrossRef Gillis A, Gray M, Burstein D (2002) Relaxivity and diffusion of gadolinium agents in cartilage. Magn Reson Med 48:1068–1071PubMedCrossRef
36.
go back to reference Wiener E, Woertler K, Weirich G, Rummeny EJ, Settles M (2007) Contrast enhanced cartilage imaging: comparison of ionic and non-ionic contrast agents. Eur J Radiol 63:110–119PubMedCrossRef Wiener E, Woertler K, Weirich G, Rummeny EJ, Settles M (2007) Contrast enhanced cartilage imaging: comparison of ionic and non-ionic contrast agents. Eur J Radiol 63:110–119PubMedCrossRef
37.
go back to reference Mathur SK, Gupta S, Marwah N, Narula A, Singh S, Arora B (2003) Significance of mucin stain in differentiating benign and malignant lesions of prostate. Indian J Pathol Microbiol 46:593–595 Mathur SK, Gupta S, Marwah N, Narula A, Singh S, Arora B (2003) Significance of mucin stain in differentiating benign and malignant lesions of prostate. Indian J Pathol Microbiol 46:593–595
38.
39.
go back to reference Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–e330PubMedCrossRef Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–e330PubMedCrossRef
40.
go back to reference van Niekerk CG, Witjes JA, Barentsz JO, van der Laak JA, Hulsbergen-van de Kaa CA (2013) Microvascularity in transition zone prostate tumors resembles normal prostatic tissue. Prostate 73:467–475 van Niekerk CG, Witjes JA, Barentsz JO, van der Laak JA, Hulsbergen-van de Kaa CA (2013) Microvascularity in transition zone prostate tumors resembles normal prostatic tissue. Prostate 73:467–475
41.
go back to reference Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRef Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRef
42.
go back to reference Purysko AS, Rosenkrantz AB, Barentsz JO, Weinreb JC, Macura KJ (2016) PI-RADS version 2: a pictorial update. Radiographics 36:1354–1372PubMedCrossRef Purysko AS, Rosenkrantz AB, Barentsz JO, Weinreb JC, Macura KJ (2016) PI-RADS version 2: a pictorial update. Radiographics 36:1354–1372PubMedCrossRef
43.
go back to reference Drew PJ, Chatterjee S, Turnbull LW et al (1999) Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann Surg Oncol 6:599–603PubMedCrossRef Drew PJ, Chatterjee S, Turnbull LW et al (1999) Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann Surg Oncol 6:599–603PubMedCrossRef
44.
go back to reference Pickles MD, Lowry M, Manton DJ, Turnbull LW (2015) Prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: a comparison with traditional survival indicators. Eur Radiol 25:1097–1106PubMedCrossRef Pickles MD, Lowry M, Manton DJ, Turnbull LW (2015) Prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: a comparison with traditional survival indicators. Eur Radiol 25:1097–1106PubMedCrossRef
Metadata
Title
Dynamic contrast-enhanced MR imaging of the prostate: intraindividual comparison of gadoterate meglumine and gadobutrol
Authors
Chau Hung Lee
Balamurugan Vellayappan
Matthias Taupitz
Bernd Hamm
Patrick Asbach
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06321-6

Other articles of this Issue 12/2019

European Radiology 12/2019 Go to the issue