Skip to main content
Top
Published in: Brain Topography 4/2019

Open Access 01-07-2019 | Original Paper

Bayesian Modelling of Induced Responses and Neuronal Rhythms

Authors: Dimitris A. Pinotsis, Roman Loonis, Andre M. Bastos, Earl K. Miller, Karl J. Friston

Published in: Brain Topography | Issue 4/2019

Login to get access

Abstract

Neural rhythms or oscillations are ubiquitous in neuroimaging data. These spectral responses have been linked to several cognitive processes; including working memory, attention, perceptual binding and neuronal coordination. In this paper, we show how Bayesian methods can be used to finesse the ill-posed problem of reconstructing—and explaining—oscillatory responses. We offer an overview of recent developments in this field, focusing on (i) the use of MEG data and Empirical Bayes to build hierarchical models for group analyses—and the identification of important sources of inter-subject variability and (ii) the construction of novel dynamic causal models of intralaminar recordings to explain layer-specific activity. We hope to show that electrophysiological measurements contain much more spatial information than is often thought: on the one hand, the dynamic causal modelling of non-invasive (low spatial resolution) electrophysiology can afford sub-millimetre (hyper-acute) resolution that is limited only by the (spatial) complexity of the underlying (dynamic causal) forward model. On the other hand, invasive microelectrode recordings (that penetrate different cortical layers) can reveal laminar-specific responses and elucidate hierarchical message passing and information processing within and between cortical regions at a macroscopic scale. In short, the careful and biophysically grounded modelling of sparse data enables one to characterise the neuronal architectures generating oscillations in a remarkable detail.
Literature
go back to reference Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401CrossRefPubMed Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85:390–401CrossRefPubMed
go back to reference Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22:8691–8704CrossRefPubMed Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22:8691–8704CrossRefPubMed
go back to reference Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci 108:11262–11267CrossRefPubMed Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci 108:11262–11267CrossRefPubMed
go back to reference Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862CrossRefPubMed Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862CrossRefPubMed
go back to reference Bush PC, Sejnowski TJ (1993) Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods 46:159–166CrossRefPubMed Bush PC, Sejnowski TJ (1993) Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods 46:159–166CrossRefPubMed
go back to reference Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5:504–510CrossRefPubMed Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5:504–510CrossRefPubMed
go back to reference Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000092CrossRefPubMedPubMedCentral Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000092CrossRefPubMedPubMedCentral
go back to reference Dickinson A, Bruyns-Haylett M, Jones M, Milne E (2015) Increased peak gamma frequency in individuals with higher levels of autistic traits. Eur J Neurosci 41:1095–1101CrossRefPubMed Dickinson A, Bruyns-Haylett M, Jones M, Milne E (2015) Increased peak gamma frequency in individuals with higher levels of autistic traits. Eur J Neurosci 41:1095–1101CrossRefPubMed
go back to reference Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM (2007) Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J Neurophysiol 97(3):2174–2190CrossRefPubMed Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM (2007) Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J Neurophysiol 97(3):2174–2190CrossRefPubMed
go back to reference Einevoll GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7:41PubMedPubMedCentral Einevoll GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7:41PubMedPubMedCentral
go back to reference Freeman JA, Nicholson CH (1975) Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 38(2):369–382CrossRefPubMed Freeman JA, Nicholson CH (1975) Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 38(2):369–382CrossRefPubMed
go back to reference Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224CrossRefPubMed Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224CrossRefPubMed
go back to reference Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc B Biol Sci 364:1211–1221CrossRef Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc B Biol Sci 364:1211–1221CrossRef
go back to reference Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. Neuroimage 34:220–234CrossRefPubMed Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. Neuroimage 34:220–234CrossRefPubMed
go back to reference Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, Henson R, Flandin G, Mattout J (2008) Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39:1104–1120CrossRefPubMed Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, Henson R, Flandin G, Mattout J (2008) Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39:1104–1120CrossRefPubMed
go back to reference Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, vanWijk BC, Ziegler G, Zeidman P (2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage 128:413–431CrossRefPubMedPubMedCentral Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, vanWijk BC, Ziegler G, Zeidman P (2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage 128:413–431CrossRefPubMedPubMedCentral
go back to reference Godlove DC, Maier A, Woodman GF, Schall JD (2014) Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J Neurosci 34:5355–5369CrossRefPubMedPubMedCentral Godlove DC, Maier A, Woodman GF, Schall JD (2014) Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J Neurosci 34:5355–5369CrossRefPubMedPubMedCentral
go back to reference Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34:944–961CrossRefPubMedPubMedCentral Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34:944–961CrossRefPubMedPubMedCentral
go back to reference Hauck M, Lorenz J, Engel AK (2007) Attention to painful stimulation enhances γ-band activity and synchronization in human sensorimotor cortex. J Neurosci 27:9270–9277CrossRefPubMed Hauck M, Lorenz J, Engel AK (2007) Attention to painful stimulation enhances γ-band activity and synchronization in human sensorimotor cortex. J Neurosci 27:9270–9277CrossRefPubMed
go back to reference Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27:10751–10764CrossRefPubMedPubMedCentral Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27:10751–10764CrossRefPubMedPubMedCentral
go back to reference Koo PC, Thome J, Berger C, Foley P, Hoeppner J (2015) Current source density analysis of resting state EEG in depression: a review. J Neural Transm 1–10. doi:10.1007/s00702-015-1432-2 Koo PC, Thome J, Berger C, Foley P, Hoeppner J (2015) Current source density analysis of resting state EEG in depression: a review. J Neural Transm 1–10. doi:10.​1007/​s00702-015-1432-2
go back to reference Kornblith S, Buschman TJ, Miller EK (2015) Stimulus load and oscillatory activity in higher cortex. Cereb Cortex 26:3772–3784CrossRefPubMed Kornblith S, Buschman TJ, Miller EK (2015) Stimulus load and oscillatory activity in higher cortex. Cereb Cortex 26:3772–3784CrossRefPubMed
go back to reference Krupa M, Popović N, Kopell N, Rotstein HG (2008) Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos Interdiscip J Nonlinear Sci 18:15106CrossRef Krupa M, Popović N, Kopell N, Rotstein HG (2008) Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos Interdiscip J Nonlinear Sci 18:15106CrossRef
go back to reference Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444CrossRefPubMed Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444CrossRefPubMed
go back to reference Lütkenhöner B (2003) Magnetoencephalography and its Achilles’ heel. J Physiol Paris 97:641–658CrossRefPubMed Lütkenhöner B (2003) Magnetoencephalography and its Achilles’ heel. J Physiol Paris 97:641–658CrossRefPubMed
go back to reference Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66:1059–1079CrossRefPubMed Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66:1059–1079CrossRefPubMed
go back to reference Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366CrossRefPubMed Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366CrossRefPubMed
go back to reference Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342:1238406CrossRefPubMedPubMedCentral Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342:1238406CrossRefPubMedPubMedCentral
go back to reference Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMed Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMed
go back to reference Mitzdorf ULLA, Singer WOLF (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J Neurophysiol 40(6):1227–1244CrossRefPubMed Mitzdorf ULLA, Singer WOLF (1977) Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density. J Neurophysiol 40(6):1227–1244CrossRefPubMed
go back to reference Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394CrossRefPubMed Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394CrossRefPubMed
go back to reference Moran R, Pinotsis DA, Friston K (2015) Neural masses and fields in dynamic causal modeling. Neural Masses Fields Model Dyn Brain Act 7:190 Moran R, Pinotsis DA, Friston K (2015) Neural masses and fields in dynamic causal modeling. Neural Masses Fields Model Dyn Brain Act 7:190
go back to reference Ness TV, Chintaluri C, Potworowski J, Łęski S, Głąbska H, Wójcik DK, Einevoll GT (2015) Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13(4):403–426CrossRefPubMedPubMedCentral Ness TV, Chintaluri C, Potworowski J, Łęski S, Głąbska H, Wójcik DK, Einevoll GT (2015) Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13(4):403–426CrossRefPubMedPubMedCentral
go back to reference Perry G, Hamandi K, Brindley LM, Muthukumaraswamy SD, Singh KD (2013) The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. Neuroimage 68:83–92CrossRefPubMed Perry G, Hamandi K, Brindley LM, Muthukumaraswamy SD, Singh KD (2013) The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. Neuroimage 68:83–92CrossRefPubMed
go back to reference Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811CrossRefPubMed Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811CrossRefPubMed
go back to reference Pinotsis D, Friston K (2014a) Gamma oscillations and neural field DCMs can reveal cortical excitability and microstructure. AIMS Neurosci 1:4–24CrossRef Pinotsis D, Friston K (2014a) Gamma oscillations and neural field DCMs can reveal cortical excitability and microstructure. AIMS Neurosci 1:4–24CrossRef
go back to reference Pinotsis D, Friston K (2014b) Extracting novel information from neuroimaging data using neural fields. EPJ Nonlinear Biomed Phys 2:5CrossRef Pinotsis D, Friston K (2014b) Extracting novel information from neuroimaging data using neural fields. EPJ Nonlinear Biomed Phys 2:5CrossRef
go back to reference Pinotsis Schwarzkopf DS, Litvak V, Rees G, Barnes G, Friston KJ (2013) Dynamic causal modelling of lateral interactions in the visual cortex. Neuroimage 66:563–576CrossRefPubMed Pinotsis Schwarzkopf DS, Litvak V, Rees G, Barnes G, Friston KJ (2013) Dynamic causal modelling of lateral interactions in the visual cortex. Neuroimage 66:563–576CrossRefPubMed
go back to reference Pinotsis DA, Brunet N, Bastos A, Bosman CA, Litvak V, Fries P, Friston KJ (2014) Contrast gain-control and horizontal interactions in V1: a DCM study. Neuroimage 92:143–155CrossRefPubMedPubMedCentral Pinotsis DA, Brunet N, Bastos A, Bosman CA, Litvak V, Fries P, Friston KJ (2014) Contrast gain-control and horizontal interactions in V1: a DCM study. Neuroimage 92:143–155CrossRefPubMedPubMedCentral
go back to reference Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015CrossRefPubMed Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015CrossRefPubMed
go back to reference Ramirez-Villegas JF, Logothetis NK, Besserve M (2015) Sharp wave-ripple complexes in a reduced model of the hippocampal CA3-CA1 network of the macaque monkey. BMC Neurosci 16:P15CrossRefPubMedCentral Ramirez-Villegas JF, Logothetis NK, Besserve M (2015) Sharp wave-ripple complexes in a reduced model of the hippocampal CA3-CA1 network of the macaque monkey. BMC Neurosci 16:P15CrossRefPubMedCentral
go back to reference Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87CrossRefPubMed Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87CrossRefPubMed
go back to reference Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, De Weerd P (2013) Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron 78:523–536CrossRefPubMed Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, De Weerd P (2013) Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron 78:523–536CrossRefPubMed
go back to reference Roth A, Häusser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445–472CrossRefPubMedPubMedCentral Roth A, Häusser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445–472CrossRefPubMedPubMedCentral
go back to reference Sakamoto K, Kawaguchi N, Yagi K, Mushiake H (2015) Spatiotemporal patterns of current source density in the prefrontal cortex of a behaving monkey. Neural Networks 62:67–72CrossRefPubMed Sakamoto K, Kawaguchi N, Yagi K, Mushiake H (2015) Spatiotemporal patterns of current source density in the prefrontal cortex of a behaving monkey. Neural Networks 62:67–72CrossRefPubMed
go back to reference Santaniello S, McCarthy MM, Montgomery EB, Gale JT, Kopell N, Sarma SV (2015) Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc Natl Acad Sci 112:E586–E595CrossRefPubMed Santaniello S, McCarthy MM, Montgomery EB, Gale JT, Kopell N, Sarma SV (2015) Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc Natl Acad Sci 112:E586–E595CrossRefPubMed
go back to reference Schoffelen J-M, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113CrossRefPubMed Schoffelen J-M, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113CrossRefPubMed
go back to reference Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci 106:21341–21346CrossRefPubMed Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci 106:21341–21346CrossRefPubMed
go back to reference Summerfield C, Trittschuh EH, Monti JM, Mesulam M-M, Egner T (2008) Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci 11:1004–1006CrossRefPubMedPubMedCentral Summerfield C, Trittschuh EH, Monti JM, Mesulam M-M, Egner T (2008) Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci 11:1004–1006CrossRefPubMedPubMedCentral
go back to reference Swettenham JB, Muthukumaraswamy SD, Singh KD (2013) BOLD responses in human primary visual cortex are insensitive to substantial changes in neural activity. Front Hum Neurosci 7:76CrossRefPubMedPubMedCentral Swettenham JB, Muthukumaraswamy SD, Singh KD (2013) BOLD responses in human primary visual cortex are insensitive to substantial changes in neural activity. Front Hum Neurosci 7:76CrossRefPubMedPubMedCentral
go back to reference Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249CrossRefPubMed Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249CrossRefPubMed
go back to reference Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650CrossRefPubMed Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650CrossRefPubMed
go back to reference Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980CrossRefPubMed Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980CrossRefPubMed
go back to reference Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336CrossRefPubMed Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336CrossRefPubMed
go back to reference Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736CrossRefPubMed Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736CrossRefPubMed
Metadata
Title
Bayesian Modelling of Induced Responses and Neuronal Rhythms
Authors
Dimitris A. Pinotsis
Roman Loonis
Andre M. Bastos
Earl K. Miller
Karl J. Friston
Publication date
01-07-2019
Publisher
Springer US
Published in
Brain Topography / Issue 4/2019
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0526-y

Other articles of this Issue 4/2019

Brain Topography 4/2019 Go to the issue