Skip to main content
Top
Published in: Diabetologia 1/2015

01-01-2015 | Article

Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes

Authors: Yuxing Zhao, Nicholas A. Scott, Stacey Fynch, Lorraine Elkerbout, W. Wei-Lynn Wong, Kylie D. Mason, Andreas Strasser, David C. Huang, Thomas W. H. Kay, Helen E. Thomas

Published in: Diabetologia | Issue 1/2015

Login to get access

Abstract

Aims/hypothesis

Type 1 diabetes results from T cell-mediated destruction of pancreatic beta cells. The mechanisms of beta cell destruction in vivo, however, remain unclear. We aimed to test the relative roles of the main cell death pathways: apoptosis, necrosis and necroptosis, in beta cell death in the development of CD4+ T cell-mediated autoimmune diabetes.

Methods

We altered expression levels of critical cell death proteins in mouse islets and tested their ability to survive CD4+ T cell-mediated attack using an in vivo graft model.

Results

Loss of the B cell leukaemia/lymphoma 2 (BCL-2) homology domain 3-only proteins BIM, PUMA or BID did not protect beta cells from this death. Overexpression of the anti-apoptotic protein BCL-2 or combined deficiency of the pro-apoptotic multi-BCL2 homology domain proteins BAX and BAK also failed to prevent beta cell destruction. Furthermore, loss of function of the death receptor Fas or its essential downstream signalling molecule Fas-associated death domain (FADD) in islets was also not protective. Using electron microscopy we observed that dying beta cells showed features of necrosis. However, islets deficient in receptor-interacting serine/threonine protein kinase 3 (RIPK3), a critical initiator of necroptosis, were still normally susceptible to CD4+ T cell-mediated destruction. Remarkably, simultaneous inhibition of apoptosis and necroptosis by combining loss of RIPK3 and overexpression of BCL-2 in islets did not protect them against immune attack either.

Conclusions/interpretation

Collectively, our data indicate that beta cells die by necrosis in autoimmune diabetes and that the programmed cell death pathways apoptosis and necroptosis are both dispensable for this process.
Literature
1.
go back to reference Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226PubMedCrossRef Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226PubMedCrossRef
2.
go back to reference Graham KL, Sutherland RM, Mannering SI et al (2012) Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 9:148–168PubMedCentralPubMedCrossRef Graham KL, Sutherland RM, Mannering SI et al (2012) Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 9:148–168PubMedCentralPubMedCrossRef
3.
go back to reference Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758PubMedCrossRef Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758PubMedCrossRef
5.
go back to reference Barthson J, Germano CM, Moore F et al (2011) Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 286:39632–39643PubMedCentralPubMedCrossRef Barthson J, Germano CM, Moore F et al (2011) Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 286:39632–39643PubMedCentralPubMedCrossRef
6.
go back to reference McKenzie MD, Jamieson E, Jansen ES et al (2010) Glucose induces pancreatic islet cell apoptosis that requires the BH3-only proteins Bim and Puma and multi-BH domain protein Bax. Diabetes 59:644–652 McKenzie MD, Jamieson E, Jansen ES et al (2010) Glucose induces pancreatic islet cell apoptosis that requires the BH3-only proteins Bim and Puma and multi-BH domain protein Bax. Diabetes 59:644–652
7.
go back to reference Wali JA, Rondas D, McKenzie MD et al (2014) The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis 5:e1124PubMedCentralPubMedCrossRef Wali JA, Rondas D, McKenzie MD et al (2014) The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis 5:e1124PubMedCentralPubMedCrossRef
8.
go back to reference Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714PubMedCrossRef Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714PubMedCrossRef
9.
go back to reference Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227PubMedCrossRef Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227PubMedCrossRef
10.
go back to reference Murphy JM, Czabotar PE, Hildebrand JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453PubMedCrossRef Murphy JM, Czabotar PE, Hildebrand JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453PubMedCrossRef
11.
go back to reference Augstein P, Stephens LA, Allison J et al (1998) Beta-cell apoptosis in an accelerated model of autoimmune diabetes. Mol Med 4:495–501PubMedCentralPubMed Augstein P, Stephens LA, Allison J et al (1998) Beta-cell apoptosis in an accelerated model of autoimmune diabetes. Mol Med 4:495–501PubMedCentralPubMed
12.
13.
go back to reference Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRef Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRef
14.
go back to reference O'Brien BA, Harmon BV, Cameron DP, Allan DJ (1997) Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes 46:750–757PubMedCrossRef O'Brien BA, Harmon BV, Cameron DP, Allan DJ (1997) Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes 46:750–757PubMedCrossRef
15.
go back to reference Watanabe A, Nishijima K, Zhao S et al (2012) Quantitative determination of apoptosis of pancreatic beta-cells in a murine model of type 1 diabetes mellitus. J Nucl Med Off Publ Soc Nucl Med 53:1585–1591 Watanabe A, Nishijima K, Zhao S et al (2012) Quantitative determination of apoptosis of pancreatic beta-cells in a murine model of type 1 diabetes mellitus. J Nucl Med Off Publ Soc Nucl Med 53:1585–1591
16.
go back to reference Charriaut-Marlangue C, Ben-Ari Y (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64PubMedCrossRef Charriaut-Marlangue C, Ben-Ari Y (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64PubMedCrossRef
17.
go back to reference Irawaty W, Kay TW, Thomas HE (2002) Transmembrane TNF and IFNgamma induce caspase-independent death of primary mouse pancreatic beta cells. Autoimmunity 35:369–375PubMedCrossRef Irawaty W, Kay TW, Thomas HE (2002) Transmembrane TNF and IFNgamma induce caspase-independent death of primary mouse pancreatic beta cells. Autoimmunity 35:369–375PubMedCrossRef
18.
go back to reference McKenzie MD, Carrington EM, Kaufmann T et al (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57:1284–1292PubMedCrossRef McKenzie MD, Carrington EM, Kaufmann T et al (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57:1284–1292PubMedCrossRef
19.
go back to reference Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17PubMedCentralPubMedCrossRef Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17PubMedCentralPubMedCrossRef
20.
go back to reference Pakala SV, Chivetta M, Kelly CB, Katz JD (1999) In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J Exp Med 189:1053–1062PubMedCentralPubMedCrossRef Pakala SV, Chivetta M, Kelly CB, Katz JD (1999) In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J Exp Med 189:1053–1062PubMedCentralPubMedCrossRef
21.
go back to reference Allison J, Thomas HE, Catterall T, Kay TW, Strasser A (2005) Transgenic expression of dominant-negative Fas-associated death domain protein in beta cells protects against Fas ligand-induced apoptosis and reduces spontaneous diabetes in nonobese diabetic mice. J Immunol 175:293–301PubMedCrossRef Allison J, Thomas HE, Catterall T, Kay TW, Strasser A (2005) Transgenic expression of dominant-negative Fas-associated death domain protein in beta cells protects against Fas ligand-induced apoptosis and reduces spontaneous diabetes in nonobese diabetic mice. J Immunol 175:293–301PubMedCrossRef
22.
go back to reference Allison J, Thomas H, Beck D et al (2000) Transgenic overexpression of human Bcl-2 in islet beta cells inhibits apoptosis but does not prevent autoimmune destruction. Int Immunol 12:9–17PubMedCrossRef Allison J, Thomas H, Beck D et al (2000) Transgenic overexpression of human Bcl-2 in islet beta cells inhibits apoptosis but does not prevent autoimmune destruction. Int Immunol 12:9–17PubMedCrossRef
23.
go back to reference Mollah ZU, Wali J, McKenzie MD et al (2011) The pro-apoptotic BH3-only protein Bid is dispensable for development of insulitis and diabetes in the non-obese diabetic mouse. Apoptosis 16:822–830PubMedCrossRef Mollah ZU, Wali J, McKenzie MD et al (2011) The pro-apoptotic BH3-only protein Bid is dispensable for development of insulitis and diabetes in the non-obese diabetic mouse. Apoptosis 16:822–830PubMedCrossRef
25.
go back to reference Katz JD, Wang B, Haskins K, Benoist C, Mathis D (1993) Following a diabetogenic T cell from genesis through pathogenesis. Cell 74:1089–1100PubMedCrossRef Katz JD, Wang B, Haskins K, Benoist C, Mathis D (1993) Following a diabetogenic T cell from genesis through pathogenesis. Cell 74:1089–1100PubMedCrossRef
26.
go back to reference Bouillet P, Purton JF, Godfrey DI et al (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926PubMedCrossRef Bouillet P, Purton JF, Godfrey DI et al (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926PubMedCrossRef
27.
go back to reference Villunger A, Michalak EM, Coultas L et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038PubMedCrossRef Villunger A, Michalak EM, Coultas L et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038PubMedCrossRef
28.
go back to reference Takeuchi O, Fisher J, Suh H, Harada H, Malynn BA, Korsmeyer SJ (2005) Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A 102:11272–11277PubMedCentralPubMedCrossRef Takeuchi O, Fisher J, Suh H, Harada H, Malynn BA, Korsmeyer SJ (2005) Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A 102:11272–11277PubMedCentralPubMedCrossRef
29.
go back to reference Virostko J, Radhika A, Poffenberger G et al (2010) Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation. Mol Imaging Biol 12:42–53PubMedCrossRef Virostko J, Radhika A, Poffenberger G et al (2010) Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation. Mol Imaging Biol 12:42–53PubMedCrossRef
30.
go back to reference Beisner DR, Ch'en IL, Kolla RV, Hoffmann A, Hedrick SM (2005) Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J Immunol 175:3469–3473PubMedCrossRef Beisner DR, Ch'en IL, Kolla RV, Hoffmann A, Hedrick SM (2005) Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J Immunol 175:3469–3473PubMedCrossRef
31.
go back to reference Ventura A, Kirsch DG, McLaughlin ME et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedCrossRef Ventura A, Kirsch DG, McLaughlin ME et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedCrossRef
32.
go back to reference Newton K, Sun X, Dixit VM (2004) Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol 24:1464–1469PubMedCentralPubMedCrossRef Newton K, Sun X, Dixit VM (2004) Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol 24:1464–1469PubMedCentralPubMedCrossRef
33.
go back to reference Dudek NL, Thomas HE, Mariana L et al (2006) Cytotoxic T-cells from T-cell receptor transgenic NOD8.3 mice destroy beta-cells via the perforin and Fas pathways. Diabetes 55:2412–2418PubMedCrossRef Dudek NL, Thomas HE, Mariana L et al (2006) Cytotoxic T-cells from T-cell receptor transgenic NOD8.3 mice destroy beta-cells via the perforin and Fas pathways. Diabetes 55:2412–2418PubMedCrossRef
34.
go back to reference Kanagawa O, Militech A, Vaupel BA (2002) Regulation of diabetes development by regulatory T cells in pancreatic islet antigen-specific TCR transgenic nonobese diabetic mice. J Immunol 168:6159–6164PubMedCrossRef Kanagawa O, Militech A, Vaupel BA (2002) Regulation of diabetes development by regulatory T cells in pancreatic islet antigen-specific TCR transgenic nonobese diabetic mice. J Immunol 168:6159–6164PubMedCrossRef
35.
go back to reference Newton K, Harris AW, Bath ML, Smith KG, Strasser A (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 17:706–718PubMedCentralPubMedCrossRef Newton K, Harris AW, Bath ML, Smith KG, Strasser A (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 17:706–718PubMedCentralPubMedCrossRef
36.
go back to reference Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248PubMedCrossRef Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248PubMedCrossRef
37.
go back to reference Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119PubMedCrossRef Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119PubMedCrossRef
38.
go back to reference Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123PubMedCentralPubMedCrossRef Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123PubMedCentralPubMedCrossRef
39.
go back to reference He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111PubMedCrossRef He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111PubMedCrossRef
40.
go back to reference Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336PubMedCrossRef Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336PubMedCrossRef
41.
go back to reference Bradley BJ, Haskins K, La Rosa FG, Lafferty KJ (1992) CD8 T cells are not required for islet destruction induced by a CD4+ islet-specific T-cell clone. Diabetes 41:1603–1608PubMedCrossRef Bradley BJ, Haskins K, La Rosa FG, Lafferty KJ (1992) CD8 T cells are not required for islet destruction induced by a CD4+ islet-specific T-cell clone. Diabetes 41:1603–1608PubMedCrossRef
42.
go back to reference Christianson SW, Shultz LD, Leiter EH (1993) Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42:44–55PubMedCrossRef Christianson SW, Shultz LD, Leiter EH (1993) Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42:44–55PubMedCrossRef
43.
go back to reference Kay TW, Campbell IL, Harrison LC (1991) Characterization of pancreatic T lymphocytes associated with beta cell destruction in the non-obese diabetic (NOD) mouse. J Autoimmun 4:263–276PubMedCrossRef Kay TW, Campbell IL, Harrison LC (1991) Characterization of pancreatic T lymphocytes associated with beta cell destruction in the non-obese diabetic (NOD) mouse. J Autoimmun 4:263–276PubMedCrossRef
44.
go back to reference Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997PubMedCentralPubMedCrossRef Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997PubMedCentralPubMedCrossRef
45.
go back to reference Wang B, Gonzalez A, Benoist C, Mathis D (1996) The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur J Immunol 26:1762–1769PubMedCrossRef Wang B, Gonzalez A, Benoist C, Mathis D (1996) The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur J Immunol 26:1762–1769PubMedCrossRef
46.
go back to reference Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM (2003) Beta cell MHC class I is a late requirement for diabetes. Proc Natl Acad Sci U S A 100:6688–6693PubMedCentralPubMedCrossRef Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM (2003) Beta cell MHC class I is a late requirement for diabetes. Proc Natl Acad Sci U S A 100:6688–6693PubMedCentralPubMedCrossRef
47.
go back to reference Calderon B, Suri A, Unanue ER (2006) In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: studies from an acute model. Am J Pathol 169:2137–2147PubMedCentralPubMedCrossRef Calderon B, Suri A, Unanue ER (2006) In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: studies from an acute model. Am J Pathol 169:2137–2147PubMedCentralPubMedCrossRef
48.
go back to reference Angstetra E, Graham KL, Emmett S et al (2009) In vivo effects of cytokines on pancreatic beta-cells in models of type I diabetes dependent on CD4(+) T lymphocytes. Immunol Cell Biol 87:178–185PubMedCrossRef Angstetra E, Graham KL, Emmett S et al (2009) In vivo effects of cytokines on pancreatic beta-cells in models of type I diabetes dependent on CD4(+) T lymphocytes. Immunol Cell Biol 87:178–185PubMedCrossRef
49.
go back to reference Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466PubMedCrossRef Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466PubMedCrossRef
50.
go back to reference Welsh N, Margulis B, Borg LA et al (1995) Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1:806–820PubMedCentralPubMed Welsh N, Margulis B, Borg LA et al (1995) Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol Med 1:806–820PubMedCentralPubMed
51.
go back to reference Fujimoto K, Chen Y, Polonsky KS, Dorn GW 2nd (2010) Targeting cyclophilin D and the mitochondrial permeability transition enhances beta-cell survival and prevents diabetes in Pdx1 deficiency. Proc Natl Acad Sci U S A 107:10214–10219PubMedCentralPubMedCrossRef Fujimoto K, Chen Y, Polonsky KS, Dorn GW 2nd (2010) Targeting cyclophilin D and the mitochondrial permeability transition enhances beta-cell survival and prevents diabetes in Pdx1 deficiency. Proc Natl Acad Sci U S A 107:10214–10219PubMedCentralPubMedCrossRef
52.
go back to reference Yang YH, Johnson JD (2013) Multi-parameter single-cell kinetic analysis reveals multiple modes of cell death in primary pancreatic beta-cells. J Cell Sci 126:4286–4295PubMedCrossRef Yang YH, Johnson JD (2013) Multi-parameter single-cell kinetic analysis reveals multiple modes of cell death in primary pancreatic beta-cells. J Cell Sci 126:4286–4295PubMedCrossRef
Metadata
Title
Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes
Authors
Yuxing Zhao
Nicholas A. Scott
Stacey Fynch
Lorraine Elkerbout
W. Wei-Lynn Wong
Kylie D. Mason
Andreas Strasser
David C. Huang
Thomas W. H. Kay
Helen E. Thomas
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 1/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3407-5

Other articles of this Issue 1/2015

Diabetologia 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine