Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 1/2018

01-01-2018 | Original Paper

Automatic regional analysis of myocardial native T1 values: left ventricle segmentation and AHA parcellations

Authors: Hsiao-Hui Huang, Chun-Yu Huang, Chiao-Ning Chen, Yun-Wen Wang, Teng-Yi Huang

Published in: The International Journal of Cardiovascular Imaging | Issue 1/2018

Login to get access

Abstract

Native T1 value is emerging as a reliable indicator of abnormal heart conditions related to myocardial fibrosis. Investigators have extensively used the standardized myocardial segmentation of the American Heart Association (AHA) to measure regional T1 values of the left ventricular (LV) walls. In this paper, we present a fully automatic system to analyze modified Look–Locker inversion recovery images and to report regional T1 values of AHA segments. Ten healthy individuals participated in the T1 mapping study with a 3.0 T scanner after providing informed consent. First, we obtained masks of an LV blood-pool region and LV walls by using an image synthesis method and a layer-growing method. Subsequently, the LV walls were divided into AHA segments by identifying the boundaries of the septal regions and by using a radial projection method. The layer-growing method significantly enhanced the accuracy of the derived myocardium mask. We compared the T1 values that were obtained using manual region of interest selections and those obtained using the automatic system. The average T1 difference of the calculated segments was 4.6 ± 1.5%. This study demonstrated a practical and robust method of obtaining native T1 values of AHA segments in LV walls.
Literature
1.
go back to reference Vogel-Claussen J et al (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 26(3):795–810CrossRefPubMed Vogel-Claussen J et al (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 26(3):795–810CrossRefPubMed
2.
go back to reference Broberg CS et al (2010) Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 3(6):727–734CrossRefPubMedPubMedCentral Broberg CS et al (2010) Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 3(6):727–734CrossRefPubMedPubMedCentral
3.
go back to reference Puntmann VO et al (2013) Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 6(2):295–301CrossRefPubMed Puntmann VO et al (2013) Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 6(2):295–301CrossRefPubMed
4.
go back to reference Puntmann VO et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6(4):475–484CrossRefPubMed Puntmann VO et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6(4):475–484CrossRefPubMed
5.
go back to reference Dabir D et al (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69CrossRefPubMedPubMedCentral Dabir D et al (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69CrossRefPubMedPubMedCentral
6.
go back to reference Moon JC et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92CrossRefPubMedPubMedCentral Moon JC et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92CrossRefPubMedPubMedCentral
8.
go back to reference Rutherford E et al (2016) Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int 90(4):845–852CrossRefPubMedPubMedCentral Rutherford E et al (2016) Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int 90(4):845–852CrossRefPubMedPubMedCentral
9.
go back to reference Dass S et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5(6):726–733CrossRefPubMed Dass S et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5(6):726–733CrossRefPubMed
10.
go back to reference Messroghli DR et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146CrossRefPubMed Messroghli DR et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146CrossRefPubMed
11.
go back to reference Liu CY et al (2013) Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 62(14):1280–1287CrossRefPubMed Liu CY et al (2013) Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 62(14):1280–1287CrossRefPubMed
12.
go back to reference Cerqueira MD et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18(1):539–542PubMed Cerqueira MD et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18(1):539–542PubMed
13.
go back to reference Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41(2):250–251CrossRef Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41(2):250–251CrossRef
14.
go back to reference Otsu, N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst 9(1):62–66 Otsu, N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst 9(1):62–66
15.
go back to reference Huang, C-Y (2016) Fully automatic AHA-17 parcellation for myocardial T1 mapping in short-axis slices. Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan Huang, C-Y (2016) Fully automatic AHA-17 parcellation for myocardial T1 mapping in short-axis slices. Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
16.
go back to reference Xue H et al (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67(6):1644–1655CrossRefPubMed Xue H et al (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med 67(6):1644–1655CrossRefPubMed
17.
go back to reference Ringenberg J et al (2014) Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI. Comput Med Imaging Graph 38(3):190–201CrossRefPubMed Ringenberg J et al (2014) Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI. Comput Med Imaging Graph 38(3):190–201CrossRefPubMed
18.
go back to reference Hu H et al (2014) Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques. PLoS ONE 9(12):e114760CrossRefPubMedPubMedCentral Hu H et al (2014) Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques. PLoS ONE 9(12):e114760CrossRefPubMedPubMedCentral
19.
go back to reference Ammar M et al (2012) Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306CrossRefPubMed Ammar M et al (2012) Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306CrossRefPubMed
20.
go back to reference Kellman P et al (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63CrossRefPubMedPubMedCentral Kellman P et al (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63CrossRefPubMedPubMedCentral
Metadata
Title
Automatic regional analysis of myocardial native T1 values: left ventricle segmentation and AHA parcellations
Authors
Hsiao-Hui Huang
Chun-Yu Huang
Chiao-Ning Chen
Yun-Wen Wang
Teng-Yi Huang
Publication date
01-01-2018
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 1/2018
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-017-1216-x

Other articles of this Issue 1/2018

The International Journal of Cardiovascular Imaging 1/2018 Go to the issue