Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2017

01-05-2017 | Original Article

Automatic detection of vertebral number abnormalities in body CT images

Authors: Shouhei Hanaoka, Yoshiyasu Nakano, Mitsutaka Nemoto, Yukihiro Nomura, Tomomi Takenaga, Soichiro Miki, Takeharu Yoshikawa, Naoto Hayashi, Yoshitaka Masutani, Akinobu Shimizu

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2017

Login to get access

Abstract

Purpose

The anatomical anomaly of the number of vertebral bones is one of the major anomalies in the human body, which can cause confusion of the spinal level in, for example, surgery. The aim of this study is to develop an automatic detection system for this type of anomaly.

Methods

We utilized our previously reported anatomical landmark detection system for this anomaly detection problem. This system uses a landmark point distribution model (L-PDM) to find multiple landmark positions. The L-PDM is a statistical probabilistic model of all landmark positions in the human body, including five landmarks for each vertebra. Given a new volume, the proposed algorithm applies five hypotheses (normal, 11 or 13 thoracic vertebrae, 4 or 6 lumbar vertebrae) to the given spine and attempts to detect all the landmarks. Then, the most plausible hypothesis with the largest posterior likelihood is selected as the anatomy detection result.

Results

The proposed method was evaluated using 300 neck-to-pelvis CT datasets. For normal subjects, the vertebrae of 211/217 (97.2%) of the subjects were successfully determined as normal. For subjects with 23 or 25 vertebrae without a transitional vertebra (TV), the vertebrae of 9/10 (90%) of the subjects were successfully determined. For subjects with TV, the vertebrae of 71/73 (97.3%) of subjects were judged as partially successfully determined.

Conclusion

Our algorithm successfully determined the number of vertebrae, and the feasibility of our proposed system was validated.
Literature
2.
go back to reference Letourneau D, Kaus M, Wong R, Vloet A, Fitzpatrick DA, Gospodarowicz M, Jaffray DA (2008) Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med Phys 35(1):367–376. doi:10.1118/1.2820631 CrossRefPubMed Letourneau D, Kaus M, Wong R, Vloet A, Fitzpatrick DA, Gospodarowicz M, Jaffray DA (2008) Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med Phys 35(1):367–376. doi:10.​1118/​1.​2820631 CrossRefPubMed
4.
go back to reference Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482CrossRefPubMed Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482CrossRefPubMed
5.
go back to reference Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A (2013) Vertebrae localization in pathological spine CT via dense classification from sparse annotations. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 16(Pt 2):262–270 Glocker B, Zikic D, Konukoglu E, Haynor DR, Criminisi A (2013) Vertebrae localization in pathological spine CT via dense classification from sparse annotations. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 16(Pt 2):262–270
10.
go back to reference Carrino JA, Campbell PD Jr, Lin DC, Morrison WB, Schweitzer ME, Flanders AE, Eng J, Vaccaro AR (2011) Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 259(1):196–202. doi:10.1148/radiol.11081511 CrossRefPubMed Carrino JA, Campbell PD Jr, Lin DC, Morrison WB, Schweitzer ME, Flanders AE, Eng J, Vaccaro AR (2011) Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 259(1):196–202. doi:10.​1148/​radiol.​11081511 CrossRefPubMed
12.
go back to reference Castellvi AE, Goldstein LA, Chan DP (1984) Lumbosacral transitional vertebrae and their relationship with lumbar extradural defects. Spine 9(5):493–495CrossRefPubMed Castellvi AE, Goldstein LA, Chan DP (1984) Lumbosacral transitional vertebrae and their relationship with lumbar extradural defects. Spine 9(5):493–495CrossRefPubMed
13.
14.
go back to reference Nakajima A, Usui A, Hosokai Y, Kawasumi Y, Abiko K, Funayama M, Saito H (2014) The prevalence of morphological changes in the thoracolumbar spine on whole-spine computed tomographic images. Insights Imaging 5(1):77–83. doi:10.1007/s13244-013-0286-0 CrossRefPubMed Nakajima A, Usui A, Hosokai Y, Kawasumi Y, Abiko K, Funayama M, Saito H (2014) The prevalence of morphological changes in the thoracolumbar spine on whole-spine computed tomographic images. Insights Imaging 5(1):77–83. doi:10.​1007/​s13244-013-0286-0 CrossRefPubMed
15.
go back to reference Yao J, O’Connor SD, Summers RM (2006) Automated spinal column extraction and partitioning. In: 3rd IEEE international symposium on biomedical imaging: nano to macro, 2006, IEEE, pp 390–393 Yao J, O’Connor SD, Summers RM (2006) Automated spinal column extraction and partitioning. In: 3rd IEEE international symposium on biomedical imaging: nano to macro, 2006, IEEE, pp 390–393
16.
go back to reference Ma J, Lu L, Zhan Y, Zhou X, Salganicoff M, Krishnan A (2010) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 13(Pt 1):19–27 Ma J, Lu L, Zhan Y, Zhou X, Salganicoff M, Krishnan A (2010) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 13(Pt 1):19–27
17.
go back to reference Glocker B, Feulner J, Criminisi A, Haynor DR, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 15(Pt 3):590–598 Glocker B, Feulner J, Criminisi A, Haynor DR, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. Int Conf Med Image Comput Comput Assist Interv (MICCAI) 15(Pt 3):590–598
19.
go back to reference Chen C, Belavy D, Yu W, Chu C, Armbrecht G, Bansmann M, Felsenberg D, Zheng G (2015) Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans Med Imaging 34(8):1719–1729. doi:10.1109/tmi.2015.2403285 CrossRefPubMed Chen C, Belavy D, Yu W, Chu C, Armbrecht G, Bansmann M, Felsenberg D, Zheng G (2015) Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans Med Imaging 34(8):1719–1729. doi:10.​1109/​tmi.​2015.​2403285 CrossRefPubMed
20.
21.
go back to reference Daenzer S, Freitag S, von Sachsen S, Steinke H, Groll M, Meixensberger J, Leimert M (2014) VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI. Med Phys 41(8):082305. doi:10.1118/1.4890587 CrossRefPubMed Daenzer S, Freitag S, von Sachsen S, Steinke H, Groll M, Meixensberger J, Leimert M (2014) VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI. Med Phys 41(8):082305. doi:10.​1118/​1.​4890587 CrossRefPubMed
23.
go back to reference Hanaoka S, Shimizu A, Nemoto M, Nomura Y, Miki S, Yoshikawa T, Hayashi N, Ohtomo K, Masutani Y (2016) Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization. Med Image Anal 35:192–214. doi:10.1016/j.media.2016.04.001 CrossRefPubMed Hanaoka S, Shimizu A, Nemoto M, Nomura Y, Miki S, Yoshikawa T, Hayashi N, Ohtomo K, Masutani Y (2016) Automatic detection of over 100 anatomical landmarks in medical CT images: A framework with independent detectors and combinatorial optimization. Med Image Anal 35:192–214. doi:10.​1016/​j.​media.​2016.​04.​001 CrossRefPubMed
24.
go back to reference Hanaoka S, Masutani Y, Nemoto M, Nomura Y, Miki S, Yoshikawa T, Hayashi N, Ohtomo K (2013) A multiple anatomical landmark detection system for body CT images. In: 2013 First international symposium on computing and networking, 4–6 December, pp 308-311. doi:10.1109/CANDAR.2013.54 Hanaoka S, Masutani Y, Nemoto M, Nomura Y, Miki S, Yoshikawa T, Hayashi N, Ohtomo K (2013) A multiple anatomical landmark detection system for body CT images. In: 2013 First international symposium on computing and networking, 4–6 December, pp 308-311. doi:10.​1109/​CANDAR.​2013.​54
26.
go back to reference Nemoto M, Masutani Y, Hanaoka S, Nomura Y, Yoshikawa T, Hayashi N, Yoshioka N, Ohtomo K (2011) A unified framework for concurrent detection of anatomical landmarks for medical image understanding. SPIE Med Imaging. doi:10.1117/12.878327 Nemoto M, Masutani Y, Hanaoka S, Nomura Y, Yoshikawa T, Hayashi N, Yoshioka N, Ohtomo K (2011) A unified framework for concurrent detection of anatomical landmarks for medical image understanding. SPIE Med Imaging. doi:10.​1117/​12.​878327
27.
go back to reference Tu Z, Zhou XS, Bogoni L, Barbu A, Comaniciu D (2006) Probabilistic 3D polyp detection in CT images: the role of sample alignment. In: Computer vision and pattern recognition, 2006 IEEE computer society conference on IEEE, pp 1544–1551 Tu Z, Zhou XS, Bogoni L, Barbu A, Comaniciu D (2006) Probabilistic 3D polyp detection in CT images: the role of sample alignment. In: Computer vision and pattern recognition, 2006 IEEE computer society conference on IEEE, pp 1544–1551
28.
go back to reference Prokop RJ, Reeves AP (1992) A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP Gr Models Image Process 54(5):438–460CrossRef Prokop RJ, Reeves AP (1992) A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP Gr Models Image Process 54(5):438–460CrossRef
29.
go back to reference Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef
30.
go back to reference Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741CrossRefPubMed Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741CrossRefPubMed
31.
go back to reference Hanaoka S, Masutani Y, Nemoto M, Nomura Y, Yoshikawa T, Hayashi N, Yoshioka N, Ohtomo K (2011) Probabilistic modeling of landmark distances and structure for anomaly-proof landmark detection. Proc Third Int Workshop Math Found Comput Anat 2011:159–169 Hanaoka S, Masutani Y, Nemoto M, Nomura Y, Yoshikawa T, Hayashi N, Yoshioka N, Ohtomo K (2011) Probabilistic modeling of landmark distances and structure for anomaly-proof landmark detection. Proc Third Int Workshop Math Found Comput Anat 2011:159–169
32.
go back to reference Kadoury S, Labelle H, Paragios N (2013) Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging 32(7):1227–1238CrossRefPubMed Kadoury S, Labelle H, Paragios N (2013) Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging 32(7):1227–1238CrossRefPubMed
33.
go back to reference Sawada Y, Hontani H (2012) A study on graphical model structure for representing statistical shape model of point distribution model. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI 2012: 15th International conference, Nice, France, October 1–5, 2012, Proceedings, Part II. Springer, Berlin, pp 470–477. doi:10.1007/978-3-642-33418-4_58 Sawada Y, Hontani H (2012) A study on graphical model structure for representing statistical shape model of point distribution model. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI 2012: 15th International conference, Nice, France, October 1–5, 2012, Proceedings, Part II. Springer, Berlin, pp 470–477. doi:10.​1007/​978-3-642-33418-4_​58
Metadata
Title
Automatic detection of vertebral number abnormalities in body CT images
Authors
Shouhei Hanaoka
Yoshiyasu Nakano
Mitsutaka Nemoto
Yukihiro Nomura
Tomomi Takenaga
Soichiro Miki
Takeharu Yoshikawa
Naoto Hayashi
Yoshitaka Masutani
Akinobu Shimizu
Publication date
01-05-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1516-y

Other articles of this Issue 5/2017

International Journal of Computer Assisted Radiology and Surgery 5/2017 Go to the issue