Skip to main content
Top
Published in: Journal of Digital Imaging 1/2015

01-02-2015

Automatic Computation of Left Ventricular Volume Changes Over a Cardiac Cycle from Echocardiography Images by Nonlinear Dimensionality Reduction

Authors: Zahra Alizadeh Sani, Ahmad Shalbaf, Hamid Behnam, Reza Shalbaf

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2015

Login to get access

Abstract

Curve of left ventricular (LV) volume changes throughout the cardiac cycle is a fundamental parameter for clinical evaluation of various cardiovascular diseases. Currently, this evaluation is often performed manually which is tedious and time consuming and suffers from significant interobserver and intraobserver variability. This paper introduces a new automatic method, based on nonlinear dimensionality reduction (NLDR) for extracting the curve of the LV volume changes over a cardiac cycle from two-dimensional (2-D) echocardiography images. Isometric feature mapping (Isomap) is one of the most popular NLDR algorithms. In this study, a modified version of Isomap algorithm, where image to image distance metric is computed using nonrigid registration, is applied on 2-D echocardiography images of one cycle of heart. Using this approach, the nonlinear information of these images is embedded in a 2-D manifold and each image is characterized by a symbol on the constructed manifold. This new representation visualizes the relationship between these images based on LV volume changes and allows extracting the curve of the LV volume changes automatically. Our method in comparison to the traditional segmentation algorithms does not need any LV myocardial segmentation and tracking, particularly difficult in the echocardiography images. Moreover, a large data set under various diseases for training is not required. The results obtained by our method are quantitatively evaluated to those obtained manually by the highly experienced echocardiographer on ten healthy volunteers and six patients which depict the usefulness of the presented method.
Literature
1.
go back to reference Guyton AC, Hall JE: Textbook of Medical Physiology. Elsevier, 2006 Guyton AC, Hall JE: Textbook of Medical Physiology. Elsevier, 2006
2.
go back to reference Gottdiener JS, Bednarz J, Devereux R, et al: Recommendations for use of echocardiography in clinical trials: a report from the American society of echocardiography's guidelines and standards committee and the task force on echocardiography in clinical trials. J Am Soc Echocardiogr 17:1086–1119, 2004PubMed Gottdiener JS, Bednarz J, Devereux R, et al: Recommendations for use of echocardiography in clinical trials: a report from the American society of echocardiography's guidelines and standards committee and the task force on echocardiography in clinical trials. J Am Soc Echocardiogr 17:1086–1119, 2004PubMed
3.
go back to reference Lang RM, Bierig M, Devereux RB, et al: Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108, 2006PubMedCrossRef Lang RM, Bierig M, Devereux RB, et al: Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108, 2006PubMedCrossRef
4.
go back to reference Cannesson M, Tanabe M, Suffoletto MS, et al: A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction. J Am Coll Cardiol 49:217–226, 2007PubMedCrossRef Cannesson M, Tanabe M, Suffoletto MS, et al: A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction. J Am Coll Cardiol 49:217–226, 2007PubMedCrossRef
5.
go back to reference Barcaro U, Moroni D, Salvetti O: Automatic computation of left ventricle ejection fraction from dynamic ultrasound images. Pattern Recognit Image Anal 18:351–358, 2008CrossRef Barcaro U, Moroni D, Salvetti O: Automatic computation of left ventricle ejection fraction from dynamic ultrasound images. Pattern Recognit Image Anal 18:351–358, 2008CrossRef
6.
go back to reference Ghanbari S, Shalbaf A, Behnam H, http://lib.bioinfo.pl/auth: Sani, ZA et al: Fully automatic segmentation of left ventricle in a sequence of echocardiography images of one cardiac cycle by dynamic directional vector field convolution (DDVFC) method and manifold Learning. Biomed Eng-App Bas C 25:1–15, 2013 Ghanbari S, Shalbaf A, Behnam H, http://​lib.​bioinfo.​pl/​auth: Sani, ZA et al: Fully automatic segmentation of left ventricle in a sequence of echocardiography images of one cardiac cycle by dynamic directional vector field convolution (DDVFC) method and manifold Learning. Biomed Eng-App Bas C 25:1–15, 2013
7.
go back to reference Saini K, Dewal ML, Rohit M: A fast region-based active contour model for boundary detection of echocardiographic images. J Digit Imaging 25:271–278, 2012PubMedCentralPubMedCrossRef Saini K, Dewal ML, Rohit M: A fast region-based active contour model for boundary detection of echocardiographic images. J Digit Imaging 25:271–278, 2012PubMedCentralPubMedCrossRef
8.
go back to reference Beymer D, Syeda-Mahmood T, Amir A, et al: Automatic estimation of left ventricular dysfunction from echocardiogram videos. IEEE Workshops on Computer Vision and Pattern Recognition (CVPR), Miami, 2009, pp 164–171 Beymer D, Syeda-Mahmood T, Amir A, et al: Automatic estimation of left ventricular dysfunction from echocardiogram videos. IEEE Workshops on Computer Vision and Pattern Recognition (CVPR), Miami, 2009, pp 164–171
9.
go back to reference Bosch JG, Mitchell SC, Lelieveldt BPF, et al: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21:1374–1383, 2002PubMedCrossRef Bosch JG, Mitchell SC, Lelieveldt BPF, et al: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21:1374–1383, 2002PubMedCrossRef
10.
go back to reference Comaniciu D, Zhou XS, Krishnan S: Robust real-time myocardial border tracking for echocardiography: an information fusion approach. IEEE Trans Med Imaging 23:849–860, 2004PubMedCrossRef Comaniciu D, Zhou XS, Krishnan S: Robust real-time myocardial border tracking for echocardiography: an information fusion approach. IEEE Trans Med Imaging 23:849–860, 2004PubMedCrossRef
11.
go back to reference Bansod P, Desai UB, Merchant SN, et al: Segmentation of left ventricle in short-axis echocardiographic sequences by weighted radial edge filtering and adaptive recovery of dropout regions. Comput Methods Biomech Biomed Eng 14(7):603–613, 2011CrossRef Bansod P, Desai UB, Merchant SN, et al: Segmentation of left ventricle in short-axis echocardiographic sequences by weighted radial edge filtering and adaptive recovery of dropout regions. Comput Methods Biomech Biomed Eng 14(7):603–613, 2011CrossRef
12.
go back to reference Setarehden SK, Soraghan JJ: Cardiac left ventricular volume changes assessment by long axis echocardiographical image processing. Vision Image Signal Proc 145:203–212, 1998CrossRef Setarehden SK, Soraghan JJ: Cardiac left ventricular volume changes assessment by long axis echocardiographical image processing. Vision Image Signal Proc 145:203–212, 1998CrossRef
13.
go back to reference Ammar M, Mahmoudi S, Chikh MA, Abbou A: Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306, 2012PubMedCentralPubMedCrossRef Ammar M, Mahmoudi S, Chikh MA, Abbou A: Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25(2):294–306, 2012PubMedCentralPubMedCrossRef
15.
go back to reference Huang S, Liu J, Lee LC, et al: An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J Digit Imaging 24(4):598–608, 2011PubMedCentralPubMedCrossRef Huang S, Liu J, Lee LC, et al: An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J Digit Imaging 24(4):598–608, 2011PubMedCentralPubMedCrossRef
16.
go back to reference Ledesma-Carbayo MJ, Kybic J, Desco M, et al: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans Med Imaging 24:1113–1126, 2005PubMedCrossRef Ledesma-Carbayo MJ, Kybic J, Desco M, et al: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans Med Imaging 24:1113–1126, 2005PubMedCrossRef
18.
go back to reference Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326, 2000PubMedCrossRef Roweis ST, Saul LK: Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326, 2000PubMedCrossRef
19.
go back to reference Saul L, Roweis S: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155, 2003 Saul L, Roweis S: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155, 2003
20.
go back to reference Belkin M, Niyogi P: Laplacian Eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585–591, 2001 Belkin M, Niyogi P: Laplacian Eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585–591, 2001
21.
go back to reference Schiller NB, Shah PM, Crawford M, DeMaria A, et al: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 2:358–367, 1989PubMedCrossRef Schiller NB, Shah PM, Crawford M, DeMaria A, et al: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 2:358–367, 1989PubMedCrossRef
22.
go back to reference Pless R, Souvenir R: A survey of manifold learning for images. IPSJ Trans Comput Vision Appl 1:83–94, 2009CrossRef Pless R, Souvenir R: A survey of manifold learning for images. IPSJ Trans Comput Vision Appl 1:83–94, 2009CrossRef
23.
go back to reference Souvenir R, Pless R: Isomap and nonparametric models of image deformation. IEEE Workshop on Motion and Video Computing (WMVC), Breckenridge, 2005, pp 195–200 Souvenir R, Pless R: Isomap and nonparametric models of image deformation. IEEE Workshop on Motion and Video Computing (WMVC), Breckenridge, 2005, pp 195–200
24.
go back to reference Gifani P, Behnam H, Shalbaf A, Sani ZA: Automatic detection of end-diastole and end-systole from echocardiography images using manifold learning. Physiol Meas 31:1091–1103, 2010PubMedCrossRef Gifani P, Behnam H, Shalbaf A, Sani ZA: Automatic detection of end-diastole and end-systole from echocardiography images using manifold learning. Physiol Meas 31:1091–1103, 2010PubMedCrossRef
25.
go back to reference Aljabar P, Rueckert D, Crum WR: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. NeuroImage 43:225–235, 2008PubMedCrossRef Aljabar P, Rueckert D, Crum WR: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis. NeuroImage 43:225–235, 2008PubMedCrossRef
26.
go back to reference Yang L, Georgescu B, Zheng Y, et al: Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking. IEEE Trans Med Imaging 30:1921–1932, 2011PubMedCrossRef Yang L, Georgescu B, Zheng Y, et al: Prediction based collaborative trackers (PCT): a robust and accurate approach toward 3D medical object tracking. IEEE Trans Med Imaging 30:1921–1932, 2011PubMedCrossRef
27.
go back to reference Akhbardeh A, Jacobs MA: Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation. Med Phys 39:2275–2289, 2012PubMedCentralPubMedCrossRef Akhbardeh A, Jacobs MA: Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation. Med Phys 39:2275–2289, 2012PubMedCentralPubMedCrossRef
28.
go back to reference Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Automated assessment of regional and global wall motion abnormalities in echocardiography images by nonlinear dimensionality reduction. Med Phys 40(5), 2013 Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Automated assessment of regional and global wall motion abnormalities in echocardiography images by nonlinear dimensionality reduction. Med Phys 40(5), 2013
29.
go back to reference Suzuki K, Zhang J, Xu J: Massive-training artificial neural network coupled with Laplacian–Eigenfunction-based dimensionality reduction for computer aided detection of polyps in CT colonography. IEEE Trans Med Imaging 29:1907–1917, 2010PubMedCentralPubMedCrossRef Suzuki K, Zhang J, Xu J: Massive-training artificial neural network coupled with Laplacian–Eigenfunction-based dimensionality reduction for computer aided detection of polyps in CT colonography. IEEE Trans Med Imaging 29:1907–1917, 2010PubMedCentralPubMedCrossRef
30.
go back to reference Wang S, Yao J, Summers RM: Improved classifier for computer-aided polyp detection in CT Colonography by nonlinear dimensionality reduction. Med Phys 35:1377–1386, 2008PubMedCentralPubMedCrossRef Wang S, Yao J, Summers RM: Improved classifier for computer-aided polyp detection in CT Colonography by nonlinear dimensionality reduction. Med Phys 35:1377–1386, 2008PubMedCentralPubMedCrossRef
31.
go back to reference Souvenir R, Pless R: Image distance functions for manifold learning. Image Vision Comput 25:365–373, 2007CrossRef Souvenir R, Pless R: Image distance functions for manifold learning. Image Vision Comput 25:365–373, 2007CrossRef
32.
go back to reference Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration”. Int J Comput Ass Rad 7(5):769–783, 2012 Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration”. Int J Comput Ass Rad 7(5):769–783, 2012
33.
go back to reference Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Automatic classification of left ventricular regional wall motion abnormalities in echocardiography images using nonrigid image registration. J Digit Imaging 26(5):909–919, 2013PubMedCentralPubMedCrossRef Shalbaf A, Behnam H, Alizadeh-Sani Z, Shojaifard M: Automatic classification of left ventricular regional wall motion abnormalities in echocardiography images using nonrigid image registration. J Digit Imaging 26(5):909–919, 2013PubMedCentralPubMedCrossRef
34.
go back to reference Dijkstra W: A note on two problems in connexion with graphs. Numer Math 1:269–271, 1959CrossRef Dijkstra W: A note on two problems in connexion with graphs. Numer Math 1:269–271, 1959CrossRef
36.
go back to reference Borg I, Groenen P: Modern multidimensional scaling: theory and applications. Springer, Berlin, 1997CrossRef Borg I, Groenen P: Modern multidimensional scaling: theory and applications. Springer, Berlin, 1997CrossRef
Metadata
Title
Automatic Computation of Left Ventricular Volume Changes Over a Cardiac Cycle from Echocardiography Images by Nonlinear Dimensionality Reduction
Authors
Zahra Alizadeh Sani
Ahmad Shalbaf
Hamid Behnam
Reza Shalbaf
Publication date
01-02-2015
Publisher
Springer US
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2015
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-014-9722-z

Other articles of this Issue 1/2015

Journal of Digital Imaging 1/2015 Go to the issue