Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2013

01-09-2013 | Original Article

Automated differentiation of glioblastomas from intracranial metastases using 3T MR spectroscopic and perfusion data

Authors: Evangelia Tsolaki, Patricia Svolos, Evanthia Kousi, Eftychia Kapsalaki, Konstantinos Fountas, Kyriaki Theodorou, Ioannis Tsougos

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2013

Login to get access

Abstract

Purpose   Differentiation of glioblastomas from metastases is clinical important, but may be difficult even for expert observers. To investigate the contribution of machine learning algorithms in the differentiation of glioblastomas multiforme (GB) from metastases, we developed and tested a pattern recognition system based on 3T magnetic resonance (MR) data.
Materials and Methods   Single and multi-voxel proton magnetic resonance spectroscopy (1H-MRS) and dynamic susceptibility contrast (DSC) MRI scans were performed on 49 patients with solitary brain tumors (35 glioblastoma multiforme and 14 metastases). Metabolic (NAA/Cr, Cho/Cr, (Lip \(+\) Lac)/Cr) and perfusion (rCBV) parameters were measured in both intratumoral and peritumoral regions. The statistical significance of these parameters was evaluated. For the classification procedure, three datasets were created to find the optimum combination of parameters that provides maximum differentiation. Three machine learning methods were utilized: Naïve-Bayes, Support Vector Machine (SVM) and \(k\)-nearest neighbor (KNN). The discrimination ability of each classifier was evaluated with quantitative performance metrics.
Results   Glioblastoma and metastases were differentiable only in the peritumoral region of these lesions (\(p<0.05\)). SVM achieved the highest overall performance (accuracy 98 %) for both the intratumoral and peritumoral areas. Naïve-Bayes and KNN presented greater variations in performance. The proper selection of datasets plays a very significant role as they are closely correlated to the underlying pathophysiology.
Conclusion   The application of pattern recognition techniques using 3T MR-based perfusion and metabolic features may provide incremental diagnostic value in the differentiation of common intraaxial brain tumors, such as glioblastoma versus metastasis.
Literature
1.
go back to reference Chiang IC et al (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imaging. Neuroradiology 46(8):619–627PubMedCrossRef Chiang IC et al (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imaging. Neuroradiology 46(8):619–627PubMedCrossRef
2.
go back to reference Liu X et al (2011) MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neurol Oncol 13(4):447–455 Liu X et al (2011) MR diffusion tensor and perfusion-weighted imaging in preoperative grading of supratentorial nonenhancing gliomas. Neurol Oncol 13(4):447–455
4.
go back to reference Toh CH et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. Am J Neuroradiol 29(3):471–475PubMedCrossRef Toh CH et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. Am J Neuroradiol 29(3):471–475PubMedCrossRef
5.
go back to reference Law M et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222(3):715–721PubMedCrossRef Law M et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222(3):715–721PubMedCrossRef
6.
go back to reference Howe FA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232PubMedCrossRef Howe FA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232PubMedCrossRef
7.
go back to reference Fan G, Sun B, Wu Z, Guo Q, Guo Y (2004) In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Radiol 59(1):77–85PubMedCrossRef Fan G, Sun B, Wu Z, Guo Q, Guo Y (2004) In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Radiol 59(1):77–85PubMedCrossRef
8.
go back to reference Al-Okaili RN et al (2007) Intraaxial brainmasses MR imaging- based diagnostic strategy-initial experience. Radiology 243(2): 539–550 Al-Okaili RN et al (2007) Intraaxial brainmasses MR imaging- based diagnostic strategy-initial experience. Radiology 243(2): 539–550
9.
go back to reference Weber MA et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66(12):1899.S–1906.S Weber MA et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66(12):1899.S–1906.S
10.
go back to reference Chawla et al (2010) Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases. J Comput Assist Tomogr 34(6):836–841 Chawla et al (2010) Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases. J Comput Assist Tomogr 34(6):836–841
11.
go back to reference Lee EJ et al (2011) Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. Am J Roentgenol 196(1):71–76 Lee EJ et al (2011) Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. Am J Roentgenol 196(1):71–76
12.
go back to reference Tsougos I et al (2012) Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging 12:1–14. doi:10.1102/1470-7330.2012.0038 CrossRef Tsougos I et al (2012) Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging 12:1–14. doi:10.​1102/​1470-7330.​2012.​0038 CrossRef
13.
go back to reference García-Gómez JM (2011) Brain tumor classification using magnetic resonance spectroscopy. In: Tumors of the central nervous. System, vol 3. Springer, pp 5–19 García-Gómez JM (2011) Brain tumor classification using magnetic resonance spectroscopy. In: Tumors of the central nervous. System, vol 3. Springer, pp 5–19
15.
go back to reference Tate AR et al (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. Nucl Magn Reson Biomed 19(4):411–434 Tate AR et al (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. Nucl Magn Reson Biomed 19(4):411–434
17.
go back to reference Gonzalez Velez H et al (2009) HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Appl Intell 30(3): 191–202 Gonzalez Velez H et al (2009) HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Appl Intell 30(3): 191–202
18.
go back to reference Arús C et al (2006) On the design of a web-based decision support system for brain tumour diagnosis using distributed agents. In: IAT Workshops, pp 208–211 Arús C et al (2006) On the design of a web-based decision support system for brain tumour diagnosis using distributed agents. In: IAT Workshops, pp 208–211
19.
go back to reference Li G, Yang J, Ye C, Geng D (2006) Degree prediction of malignancy in brain glioma using support vector machines. Comput Biol Med 36(3):313–325PubMedCrossRef Li G, Yang J, Ye C, Geng D (2006) Degree prediction of malignancy in brain glioma using support vector machines. Comput Biol Med 36(3):313–325PubMedCrossRef
20.
go back to reference Zacharaki EI, Kanas VG, Davatzikos C (2011) Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg 6(6):821–828PubMedCrossRef Zacharaki EI, Kanas VG, Davatzikos C (2011) Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg 6(6):821–828PubMedCrossRef
21.
go back to reference Zacharaki EI et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618PubMedCrossRef Zacharaki EI et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618PubMedCrossRef
22.
go back to reference Devos A et al (2005) The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson 173(2):218–228PubMedCrossRef Devos A et al (2005) The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson 173(2):218–228PubMedCrossRef
23.
go back to reference Garcia-Gomez JM et al (2009) Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. MAGMA 22(1):5–18PubMedCrossRef Garcia-Gomez JM et al (2009) Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. MAGMA 22(1):5–18PubMedCrossRef
24.
go back to reference Blanchet L et al (2011) Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. Am J Neuroradiol 32(1):67–73PubMed Blanchet L et al (2011) Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. Am J Neuroradiol 32(1):67–73PubMed
25.
go back to reference Dimou I et al (2011) Brain lesion classification using 3T MRS spectra and paired SVM kernels. Biomed Signal Process Control 6(3):314–320CrossRef Dimou I et al (2011) Brain lesion classification using 3T MRS spectra and paired SVM kernels. Biomed Signal Process Control 6(3):314–320CrossRef
26.
go back to reference Kousi E et al (2012) Spectroscopic evaluation of Glioma grading at 3T: the combined role of short and long TE. Sci World J 2012:546171 Kousi E et al (2012) Spectroscopic evaluation of Glioma grading at 3T: the combined role of short and long TE. Sci World J 2012:546171
27.
28.
go back to reference Zhang H (2008) Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology 50(6):525–530 Zhang H (2008) Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology 50(6):525–530
29.
go back to reference Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with Glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867PubMed Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with Glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol 27:859–867PubMed
30.
go back to reference Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211(3):791–798 Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211(3):791–798
31.
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297
33.
go back to reference John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: (UAI’95) Philippe B, Steve H (eds) Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., San Francisco, pp 338–345 John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: (UAI’95) Philippe B, Steve H (eds) Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., San Francisco, pp 338–345
34.
go back to reference Kazmierska J, Malicki J (2008) Application of the Naïve Bayesian Classifier to optimize treatment decisions. Radiother Oncol 86(2):211–216PubMedCrossRef Kazmierska J, Malicki J (2008) Application of the Naïve Bayesian Classifier to optimize treatment decisions. Radiother Oncol 86(2):211–216PubMedCrossRef
35.
go back to reference Cover TM, Hart PE (1967) Nearest neighbor pattern classification. Inst Electr Electron Eng Trans Inf Theory 13:21–27CrossRef Cover TM, Hart PE (1967) Nearest neighbor pattern classification. Inst Electr Electron Eng Trans Inf Theory 13:21–27CrossRef
36.
go back to reference Wang J, Neskovic P, Cooper LN (2007) Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit Lett 28(2):207–213CrossRef Wang J, Neskovic P, Cooper LN (2007) Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit Lett 28(2):207–213CrossRef
37.
go back to reference Lukas L et al (2004) Brain tumor classification based on long echo proton MRS signal. Artif Intell Med 31(1):73–89 Lukas L et al (2004) Brain tumor classification based on long echo proton MRS signal. Artif Intell Med 31(1):73–89
38.
go back to reference Qi H (2002) Feature selection and kNN fusion in molecular classification of multiple tumor types. In: Proceedings of the mathematics and engineering techniques in medicine and biological sciences. Las Vegas, Nevada Qi H (2002) Feature selection and kNN fusion in molecular classification of multiple tumor types. In: Proceedings of the mathematics and engineering techniques in medicine and biological sciences. Las Vegas, Nevada
39.
go back to reference Li S, Harner EJ, Adjeroh DA (2011) Random KNN feature selection-a fast and stable alternative to random forest. BMC Bioinform 12:450 Li S, Harner EJ, Adjeroh DA (2011) Random KNN feature selection-a fast and stable alternative to random forest. BMC Bioinform 12:450
40.
go back to reference Wu X et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37CrossRef Wu X et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37CrossRef
41.
go back to reference Opstad KS et al (2004) Differentiation of metastases from high-grade gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 20(2):187–192PubMedCrossRef Opstad KS et al (2004) Differentiation of metastases from high-grade gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 20(2):187–192PubMedCrossRef
42.
go back to reference Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Methods in molecular biology. Data Mining Techniques for the Life Sciences, vol 609. Springer, Berlin, pp 223–239 Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Methods in molecular biology. Data Mining Techniques for the Life Sciences, vol 609. Springer, Berlin, pp 223–239
43.
go back to reference Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2–3): 103–130 Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2–3): 103–130
44.
go back to reference Friedman JH, Fayyad U (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min Knowl Discov 1(1):55–77CrossRef Friedman JH, Fayyad U (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min Knowl Discov 1(1):55–77CrossRef
45.
go back to reference Frank E, Trigg L, Holmes G, Witten IH (2000) Technical note: Naive Bayes for regression. Mach Learn 41(1):5–25CrossRef Frank E, Trigg L, Holmes G, Witten IH (2000) Technical note: Naive Bayes for regression. Mach Learn 41(1):5–25CrossRef
46.
go back to reference Williams N, Zander S, Armitage G (2006) A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM Comput Commun Rev 36(5) Williams N, Zander S, Armitage G (2006) A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM Comput Commun Rev 36(5)
47.
go back to reference Cunningham P, Delany SJ (2007) k-Nearest Neighbour Classifiers. Technical Report UCD-CSI-2007-4 Cunningham P, Delany SJ (2007) k-Nearest Neighbour Classifiers. Technical Report UCD-CSI-2007-4
Metadata
Title
Automated differentiation of glioblastomas from intracranial metastases using 3T MR spectroscopic and perfusion data
Authors
Evangelia Tsolaki
Patricia Svolos
Evanthia Kousi
Eftychia Kapsalaki
Konstantinos Fountas
Kyriaki Theodorou
Ioannis Tsougos
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2013
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-012-0808-0

Other articles of this Issue 5/2013

International Journal of Computer Assisted Radiology and Surgery 5/2013 Go to the issue