Skip to main content
Top
Published in: Diabetologia 12/2014

01-12-2014 | Article

Autocrine activation of P2Y1 receptors couples Ca2+ influx to Ca2+ release in human pancreatic beta cells

Authors: Shara Khan, Richard Yan-Do, Eric Duong, Xichen Wu, Austin Bautista, Stephen Cheley, Patrick E. MacDonald, Matthias Braun

Published in: Diabetologia | Issue 12/2014

Login to get access

Abstract

Aims/hypothesis

There is evidence that ATP acts as an autocrine signal in beta cells but the receptors and pathways involved are incompletely understood. Here we investigate the receptor subtype(s) and mechanism(s) mediating the effects of ATP on human beta cells.

Methods

We examined the effects of purinergic agonists and antagonists on membrane potential, membrane currents, intracellular Ca2+ ([Ca2+]i) and insulin secretion in human beta cells.

Results

Extracellular application of ATP evoked small inward currents (3.4 ± 0.7 pA) accompanied by depolarisation of the membrane potential (by 14.4 ± 2.4 mV) and stimulation of electrical activity at 6 mmol/l glucose. ATP increased [Ca2+]i by stimulating Ca2+ influx and evoking Ca2+ release via InsP3-receptors in the endoplasmic reticulum (ER). ATP-evoked Ca2+ release was sufficient to trigger exocytosis in cells voltage-clamped at −70 mV. All effects of ATP were mimicked by the P2Y(1/12/13) agonist ADP and the P2Y1 agonist MRS-2365, whereas the P2X(1/3) agonist α,β-methyleneadenosine-5-triphosphate only had a small effect. The P2Y1 antagonists MRS-2279 and MRS-2500 hyperpolarised glucose-stimulated beta cells and lowered [Ca2+]i in the absence of exogenously added ATP and inhibited glucose-induced insulin secretion by 35%. In voltage-clamped cells subjected to action potential-like stimulation, MRS-2279 decreased [Ca2+]i and exocytosis without affecting Ca2+ influx.

Conclusions/interpretation

These data demonstrate that ATP acts as a positive autocrine signal in human beta cells by activating P2Y1 receptors, stimulating electrical activity and coupling Ca2+ influx to Ca2+ release from ER stores.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbracchio MP, Burnstock G, Boeynaems J-M et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341PubMedCentralPubMedCrossRef Abbracchio MP, Burnstock G, Boeynaems J-M et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341PubMedCentralPubMedCrossRef
2.
go back to reference Gever JR, Cockayne DA, Dillon MP et al (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537PubMedCrossRef Gever JR, Cockayne DA, Dillon MP et al (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537PubMedCrossRef
3.
go back to reference Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305PubMedCentralPubMed Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305PubMedCentralPubMed
4.
go back to reference Galvanovskis J, Braun M, Rorsman P (2011) Exocytosis from pancreatic β-cells: mathematical modelling of the exit of low-molecular-weight granule content. Interface Focus 1:143–152PubMedCentralPubMedCrossRef Galvanovskis J, Braun M, Rorsman P (2011) Exocytosis from pancreatic β-cells: mathematical modelling of the exit of low-molecular-weight granule content. Interface Focus 1:143–152PubMedCentralPubMedCrossRef
5.
go back to reference Braun M, Wendt A, Karanauskaite J et al (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 129:221–231PubMedCentralPubMedCrossRef Braun M, Wendt A, Karanauskaite J et al (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 129:221–231PubMedCentralPubMedCrossRef
6.
go back to reference Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–35PubMedCrossRef Hazama A, Hayashi S, Okada Y (1998) Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflugers Arch 437:31–35PubMedCrossRef
7.
go back to reference Obermüller S, Lindqvist A, Karanauskaite J et al (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282PubMedCrossRef Obermüller S, Lindqvist A, Karanauskaite J et al (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282PubMedCrossRef
8.
go back to reference Petit P, Lajoix A-D, Gross R (2009) P2 purinergic signalling in the pancreatic beta-cell: control of insulin secretion and pharmacology. Eur J Pharm Sci 37:67–75PubMedCrossRef Petit P, Lajoix A-D, Gross R (2009) P2 purinergic signalling in the pancreatic beta-cell: control of insulin secretion and pharmacology. Eur J Pharm Sci 37:67–75PubMedCrossRef
9.
go back to reference Braun M, Ramracheya R, Rorsman P (2012) Autocrine regulation of insulin secretion. Diabetes Obes Metab 14(Suppl 3):143–151PubMedCrossRef Braun M, Ramracheya R, Rorsman P (2012) Autocrine regulation of insulin secretion. Diabetes Obes Metab 14(Suppl 3):143–151PubMedCrossRef
10.
go back to reference Fernandez-Alvarez J, Hillaire-Buys D, Loubatières-Mariani MM et al (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22:69–71PubMedCrossRef Fernandez-Alvarez J, Hillaire-Buys D, Loubatières-Mariani MM et al (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22:69–71PubMedCrossRef
11.
go back to reference Jacques-Silva MC, Correa-Medina M, Cabrera O et al (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A 107:6465–6470PubMedCentralPubMedCrossRef Jacques-Silva MC, Correa-Medina M, Cabrera O et al (2010) ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A 107:6465–6470PubMedCentralPubMedCrossRef
12.
go back to reference Wuttke A, Idevall-Hagren O, Tengholm A (2013) P2Y1 receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion. FASEB J 27:1610–1620PubMedCrossRef Wuttke A, Idevall-Hagren O, Tengholm A (2013) P2Y1 receptor-dependent diacylglycerol signaling microdomains in β cells promote insulin secretion. FASEB J 27:1610–1620PubMedCrossRef
13.
go back to reference Glas R, Sauter NS, Schulthess FT et al (2009) Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 52:1579–1588PubMedCentralPubMedCrossRef Glas R, Sauter NS, Schulthess FT et al (2009) Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 52:1579–1588PubMedCentralPubMedCrossRef
14.
go back to reference Silva AM, Rodrigues RJ, Tomé AR et al (2008) Electrophysiological and immunocytochemical evidence for P2X purinergic receptors in pancreatic beta cells. Pancreas 36:279–283PubMedCrossRef Silva AM, Rodrigues RJ, Tomé AR et al (2008) Electrophysiological and immunocytochemical evidence for P2X purinergic receptors in pancreatic beta cells. Pancreas 36:279–283PubMedCrossRef
15.
17.
go back to reference Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628PubMedCrossRef Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628PubMedCrossRef
18.
go back to reference Kailey B, van de Bunt M, Cheley S et al (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. Am J Physiol Endocrinol Metab 303:E1107–E1116PubMedCentralPubMedCrossRef Kailey B, van de Bunt M, Cheley S et al (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. Am J Physiol Endocrinol Metab 303:E1107–E1116PubMedCentralPubMedCrossRef
19.
go back to reference Macdonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283–290PubMedCrossRef Macdonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell Metab 4:283–290PubMedCrossRef
20.
go back to reference Karanauskaite J, Hoppa MB, Braun M et al (2009) Quantal ATP release in rat beta-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 458:389–401PubMedCrossRef Karanauskaite J, Hoppa MB, Braun M et al (2009) Quantal ATP release in rat beta-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 458:389–401PubMedCrossRef
21.
go back to reference Beigi RD, Kertesy SB, Aquilina G, Dubyak GR (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 140:507–519PubMedCentralPubMedCrossRef Beigi RD, Kertesy SB, Aquilina G, Dubyak GR (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 140:507–519PubMedCentralPubMedCrossRef
22.
go back to reference Kim YC, Brown SG, Harden TK et al (2001) Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. J Med Chem 44:340–349PubMedCrossRef Kim YC, Brown SG, Harden TK et al (2001) Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. J Med Chem 44:340–349PubMedCrossRef
23.
go back to reference Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973PubMed Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973PubMed
25.
go back to reference Geisler JC, Corbin KL, Li Q et al (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154:675–684PubMedCentralPubMedCrossRef Geisler JC, Corbin KL, Li Q et al (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154:675–684PubMedCentralPubMedCrossRef
26.
go back to reference Gylfe E, Grapengiesser E, Dansk H, Hellman B (2012) The neurotransmitter ATP triggers Ca2+ responses promoting coordination of pancreatic islet oscillations. Pancreas 41:258–263PubMedCrossRef Gylfe E, Grapengiesser E, Dansk H, Hellman B (2012) The neurotransmitter ATP triggers Ca2+ responses promoting coordination of pancreatic islet oscillations. Pancreas 41:258–263PubMedCrossRef
27.
go back to reference Grapengiesser E, Dansk H, Hellman B (2004) Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca2+ oscillations. Biochem Pharmacol 68:667–674PubMedCrossRef Grapengiesser E, Dansk H, Hellman B (2004) Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca2+ oscillations. Biochem Pharmacol 68:667–674PubMedCrossRef
28.
go back to reference Zhang M, Fendler B, Peercy B et al (2008) Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys J 95:4676–4688PubMedCentralPubMedCrossRef Zhang M, Fendler B, Peercy B et al (2008) Long lasting synchronization of calcium oscillations by cholinergic stimulation in isolated pancreatic islets. Biophys J 95:4676–4688PubMedCentralPubMedCrossRef
29.
go back to reference Léon C, Freund M, Latchoumanin O et al (2005) The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1:145–151PubMedCentralPubMedCrossRef Léon C, Freund M, Latchoumanin O et al (2005) The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1:145–151PubMedCentralPubMedCrossRef
30.
go back to reference Poulsen CR, Bokvist K, Olsen HL et al (1999) Multiple sites of purinergic control of insulin secretion in mouse pancreatic β-cells. Diabetes 48:2171–2181PubMedCrossRef Poulsen CR, Bokvist K, Olsen HL et al (1999) Multiple sites of purinergic control of insulin secretion in mouse pancreatic β-cells. Diabetes 48:2171–2181PubMedCrossRef
31.
go back to reference Gong Q, Kakei M, Koriyama N et al (2000) P2Y-purinoceptor mediated inhibition of L-type Ca2+ channels in rat pancreatic beta-cells. Cell Struct Funct 25:279–289PubMedCrossRef Gong Q, Kakei M, Koriyama N et al (2000) P2Y-purinoceptor mediated inhibition of L-type Ca2+ channels in rat pancreatic beta-cells. Cell Struct Funct 25:279–289PubMedCrossRef
32.
go back to reference Töpfer M, Burbiel CE, Müller CE et al (2008) Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: the possible contribution of 86Rb+ efflux and 45Ca2+ uptake. Cell Biochem Funct 26:833–843PubMedCrossRef Töpfer M, Burbiel CE, Müller CE et al (2008) Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: the possible contribution of 86Rb+ efflux and 45Ca2+ uptake. Cell Biochem Funct 26:833–843PubMedCrossRef
33.
go back to reference Syed SK, Kauffman AL, Beavers LS et al (2013) Ectonucleotidase NTPDase3 is abundant in pancreatic β-cells and regulates glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 305:E1319–E1326PubMedCrossRef Syed SK, Kauffman AL, Beavers LS et al (2013) Ectonucleotidase NTPDase3 is abundant in pancreatic β-cells and regulates glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 305:E1319–E1326PubMedCrossRef
34.
go back to reference Xie L, Zhang M, Zhou W et al (2006) Extracellular ATP stimulates exocytosis via localized Ca2+ release from acidic stores in rat pancreatic beta cells. Traffic 7:429–439PubMedCrossRef Xie L, Zhang M, Zhou W et al (2006) Extracellular ATP stimulates exocytosis via localized Ca2+ release from acidic stores in rat pancreatic beta cells. Traffic 7:429–439PubMedCrossRef
35.
go back to reference Aoyama T, Koga S, Nakatsuka T et al (2010) Excitation of rat spinal ventral horn neurons by purinergic P2X and P2Y receptor activation. Brain Res 1340:10–17PubMedCrossRef Aoyama T, Koga S, Nakatsuka T et al (2010) Excitation of rat spinal ventral horn neurons by purinergic P2X and P2Y receptor activation. Brain Res 1340:10–17PubMedCrossRef
36.
go back to reference Hu H-Z, Gao N, Zhu MX et al (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol Lond 550:493–504PubMedCentralPubMedCrossRef Hu H-Z, Gao N, Zhu MX et al (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol Lond 550:493–504PubMedCentralPubMedCrossRef
37.
go back to reference Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620PubMedCrossRef Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620PubMedCrossRef
38.
go back to reference Swayne LA, Mezghrani A, Varrault A et al (2009) The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic beta-cell line. EMBO Rep 10:873–880PubMedCentralPubMedCrossRef Swayne LA, Mezghrani A, Varrault A et al (2009) The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic beta-cell line. EMBO Rep 10:873–880PubMedCentralPubMedCrossRef
40.
go back to reference Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic beta-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286:E759–E765PubMedCrossRef Hellman B, Dansk H, Grapengiesser E (2004) Pancreatic beta-cells communicate via intermittent release of ATP. Am J Physiol Endocrinol Metab 286:E759–E765PubMedCrossRef
41.
go back to reference Boyer JL, Adams M, Ravi RG et al (2002) 2-Chloro N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate is a selective high affinity P2Y1 receptor antagonist. Br J Pharmacol 135:2004–2010PubMedCentralPubMedCrossRef Boyer JL, Adams M, Ravi RG et al (2002) 2-Chloro N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate is a selective high affinity P2Y1 receptor antagonist. Br J Pharmacol 135:2004–2010PubMedCentralPubMedCrossRef
42.
go back to reference Kim HS, Ohno M, Xu B et al (2003) 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem 46:4974–4987PubMedCentralPubMedCrossRef Kim HS, Ohno M, Xu B et al (2003) 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem 46:4974–4987PubMedCentralPubMedCrossRef
43.
go back to reference Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751PubMedCrossRef Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751PubMedCrossRef
44.
go back to reference Satin LS (2000) Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 13:251–262PubMedCrossRef Satin LS (2000) Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 13:251–262PubMedCrossRef
45.
go back to reference Braun M, Ramracheya R, Amisten S et al (2009) Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia 52:1566–1578PubMedCrossRef Braun M, Ramracheya R, Amisten S et al (2009) Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia 52:1566–1578PubMedCrossRef
46.
go back to reference Zhang Q, Bengtsson M, Partridge C et al (2007) R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9:453–460PubMedCrossRef Zhang Q, Bengtsson M, Partridge C et al (2007) R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9:453–460PubMedCrossRef
47.
go back to reference Huang C-J, Lin C-Y, Haataja L et al (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027PubMedCrossRef Huang C-J, Lin C-Y, Haataja L et al (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027PubMedCrossRef
48.
go back to reference Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461PubMedCrossRef Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461PubMedCrossRef
49.
go back to reference Kono T, Ahn G, Moss DR et al (2012) PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycemic and cytokine stress. Mol Endocrinol 26:257–271PubMedCentralPubMedCrossRef Kono T, Ahn G, Moss DR et al (2012) PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycemic and cytokine stress. Mol Endocrinol 26:257–271PubMedCentralPubMedCrossRef
50.
go back to reference Ravier MA, Daro D, Roma LP et al (2011) Mechanisms of control of the free Ca2+ concentration in the endoplasmic reticulum of mouse pancreatic β-cells: interplay with cell metabolism and [Ca2+]c and role of SERCA2b and SERCA3. Diabetes 60:2533–2545PubMedCentralPubMedCrossRef Ravier MA, Daro D, Roma LP et al (2011) Mechanisms of control of the free Ca2+ concentration in the endoplasmic reticulum of mouse pancreatic β-cells: interplay with cell metabolism and [Ca2+]c and role of SERCA2b and SERCA3. Diabetes 60:2533–2545PubMedCentralPubMedCrossRef
Metadata
Title
Autocrine activation of P2Y1 receptors couples Ca2+ influx to Ca2+ release in human pancreatic beta cells
Authors
Shara Khan
Richard Yan-Do
Eric Duong
Xichen Wu
Austin Bautista
Stephen Cheley
Patrick E. MacDonald
Matthias Braun
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 12/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3368-8

Other articles of this Issue 12/2014

Diabetologia 12/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine