Skip to main content
Top
Published in: BMC Psychiatry 1/2020

Open Access 01-12-2020 | Autism Spectrum Disorder | Research article

Mutation screening of the UBE3A gene in Chinese Han population with autism

Authors: Xue Zhao, Ran Zhang, Shunying Yu

Published in: BMC Psychiatry | Issue 1/2020

Login to get access

Abstract

Background

15q11–13 region is one of the most complex chromosomal regions in the human genome. UBE3A is an important candidate gene of autism spectrum disorder (ASD), which located at the 15q11–13 region and encodes ubiquitin-protein ligase E3A. Previous studies about UBE3A gene and ASD have shown inconsistent results and few studies were performed in Chinese population. This study aimed to detect the genetic mutations of UBE3A gene in Chinese Han population with ASD and analyze genetic association between these variants and ASD.

Methods

The samples consisted of 192 patients with autism according to the DSM-IV diagnostic criteria and 192 healthy controls. We searched for mutations at coding sequence (CDS) regions and their adjacent non-coding regions of UBE3A gene using the high resolution melting (HRM) and Sanger sequencing methods. We further increased sample size to validate the detected variants using HRM and conducted association analysis between case and control groups.

Results

A known single nucleotide polymorphism (T > C, rs150331504) located at the CDS4 and a known 5 bp insertion/deletion variation (AACTC+/−, rs71127053) located at the intron region of the upstream 288 bp of the CDS2 of UBE3A gene were detected using Sanger sequencing method. The ASD samples of case group were 391 for rs71127053, 384 for rs150331504 and 384 healthy controls, which were used to make an association analysis. The results of association analysis suggested that there were no significant difference about the allele and genotype frequencies of rs71127053 and rs150331504 between case and control groups after extending the sample size. Besides, rs150331504 is a synonymous mutation and we compared the secondary structure and minimum free energy (MFE) of mRNA harboring the allele T or C of rs150331504 using RNAfold software. We found that the centroid secondary structure apparently differs along with the polymorphisms of rs150331504 T > C, the results suggested that this variant might change the secondary structure of mRNA of UBE3A gene. We did not detect mutations in other coding regions of UBE3A gene.

Conclusions

These findings showed that UBE3A gene might not be a major disease gene in Chinese ASD cases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Doernberg E, Hollander E. Neurodevelopmental disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11. CNS Spectr. 2016;21(4):295–9.CrossRef Doernberg E, Hollander E. Neurodevelopmental disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11. CNS Spectr. 2016;21(4):295–9.CrossRef
2.
go back to reference Baio JWL, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, et al. Prevalence of autism Spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23.CrossRef Baio JWL, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, et al. Prevalence of autism Spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23.CrossRef
3.
go back to reference Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.CrossRef Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.CrossRef
4.
go back to reference Feng L, Li C, Chiu H, Lee TS, Spencer MD, Wong JC. Autism spectrum disorder in Chinese populations: a brief review. Asia Pac Psychiatry. 2013;5(2):54–60.CrossRef Feng L, Li C, Chiu H, Lee TS, Spencer MD, Wong JC. Autism spectrum disorder in Chinese populations: a brief review. Asia Pac Psychiatry. 2013;5(2):54–60.CrossRef
5.
go back to reference Brown AS, Sourander A, Hinkka-Yli-Salomaki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–64.CrossRef Brown AS, Sourander A, Hinkka-Yli-Salomaki S, McKeague IW, Sundvall J, Surcel HM. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–64.CrossRef
6.
go back to reference Gardener H, Spiegelman D, Buka SL. Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry. 2009;195(1):7–14.CrossRef Gardener H, Spiegelman D, Buka SL. Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry. 2009;195(1):7–14.CrossRef
7.
go back to reference Ratajczak HV. Theoretical aspects of autism: causes--a review. J Immunotoxicol. 2011;8(1):68–79.CrossRef Ratajczak HV. Theoretical aspects of autism: causes--a review. J Immunotoxicol. 2011;8(1):68–79.CrossRef
8.
go back to reference Delorme R, Moreno-De-Luca D, Gennetier A, Maier W, Chaste P, Mossner R, et al. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder. BMC Med Genet. 2010;11:100.CrossRef Delorme R, Moreno-De-Luca D, Gennetier A, Maier W, Chaste P, Mossner R, et al. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder. BMC Med Genet. 2010;11:100.CrossRef
9.
go back to reference Nurmi EL, Amin T, Olson LM, Jacobs MM, McCauley JL, Lam AY, et al. Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry. 2003;8(6):624–34 570.CrossRef Nurmi EL, Amin T, Olson LM, Jacobs MM, McCauley JL, Lam AY, et al. Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry. 2003;8(6):624–34 570.CrossRef
10.
go back to reference Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, et al. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry. 2009;66(4):349–59.CrossRef Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, et al. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry. 2009;66(4):349–59.CrossRef
11.
go back to reference Fang P, Lev-Lehman E, Tsai TF, Matsuura T, Benton CS, Sutcliffe JS, et al. The spectrum of mutations in UBE3A causing Angelman syndrome. Hum Mol Genet. 1999;8(1):129–35.CrossRef Fang P, Lev-Lehman E, Tsai TF, Matsuura T, Benton CS, Sutcliffe JS, et al. The spectrum of mutations in UBE3A causing Angelman syndrome. Hum Mol Genet. 1999;8(1):129–35.CrossRef
12.
go back to reference Bonati MT, Russo S, Finelli P, Valsecchi MR, Cogliati F, Cavalleri F, et al. Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics. 2007;8(3):169–78.CrossRef Bonati MT, Russo S, Finelli P, Valsecchi MR, Cogliati F, Cavalleri F, et al. Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics. 2007;8(3):169–78.CrossRef
13.
go back to reference Trillingsgaard A, JR OS. Autism in Angelman syndrome: an exploration of comorbidity. Autism. 2004;8(2):163–74.CrossRef Trillingsgaard A, JR OS. Autism in Angelman syndrome: an exploration of comorbidity. Autism. 2004;8(2):163–74.CrossRef
14.
go back to reference Cook EH CR Jr, Cox NJ, Lord C, Gonen D, Guter SJ, Lincoln A, Nix K, Haas R, Leventhal BL, Courchesne E. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet. 1998;62(5):1077–83.CrossRef Cook EH CR Jr, Cox NJ, Lord C, Gonen D, Guter SJ, Lincoln A, Nix K, Haas R, Leventhal BL, Courchesne E. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet. 1998;62(5):1077–83.CrossRef
15.
go back to reference Nurmi EL, Bradford Y, Chen Y, Hall J, Arnone B, Gardiner MB, et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics. 2001;77(1–2):105–13.CrossRef Nurmi EL, Bradford Y, Chen Y, Hall J, Arnone B, Gardiner MB, et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics. 2001;77(1–2):105–13.CrossRef
16.
go back to reference Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459(7246):569–73.CrossRef Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459(7246):569–73.CrossRef
17.
go back to reference Veenstra-VanderWeele J, Gonen D, Leventhal BL, Cook EH Jr. Mutation screening of the UBE3A/E6-AP gene in autistic disorder. Mol Psychiatry. 1999;4(1):64–7.CrossRef Veenstra-VanderWeele J, Gonen D, Leventhal BL, Cook EH Jr. Mutation screening of the UBE3A/E6-AP gene in autistic disorder. Mol Psychiatry. 1999;4(1):64–7.CrossRef
18.
go back to reference Schaaf CP, Sabo A, Sakai Y, Crosby J, Muzny D, Hawes A, et al. Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum Mol Genet. 2011;20(17):3366–75.CrossRef Schaaf CP, Sabo A, Sakai Y, Crosby J, Muzny D, Hawes A, et al. Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum Mol Genet. 2011;20(17):3366–75.CrossRef
19.
go back to reference Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.CrossRef Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.CrossRef
20.
go back to reference Yi JJ, Berrios J, Newbern JM, Snider WD, Philpot BD, Hahn KM, et al. An autism-linked mutation disables phosphorylation control of UBE3A. Cell. 2015;162(4):795–807.CrossRef Yi JJ, Berrios J, Newbern JM, Snider WD, Philpot BD, Hahn KM, et al. An autism-linked mutation disables phosphorylation control of UBE3A. Cell. 2015;162(4):795–807.CrossRef
21.
go back to reference Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell. 2009;137(7):1235–46.CrossRef Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell. 2009;137(7):1235–46.CrossRef
22.
go back to reference Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med. 2011;3(103):103ra97.CrossRef Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med. 2011;3(103):103ra97.CrossRef
23.
go back to reference Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.CrossRef Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.CrossRef
24.
go back to reference Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.CrossRef Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.CrossRef
25.
go back to reference Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–9.CrossRef Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–9.CrossRef
26.
go back to reference Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314(5807):1930–3.CrossRef Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314(5807):1930–3.CrossRef
27.
go back to reference Groothuis TA, Dantuma NP, Neefjes J, Salomons FA. Ubiquitin crosstalk connecting cellular processes. Cell Div. 2006;1:21.CrossRef Groothuis TA, Dantuma NP, Neefjes J, Salomons FA. Ubiquitin crosstalk connecting cellular processes. Cell Div. 2006;1:21.CrossRef
28.
go back to reference Yi JJ, Ehlers MD. Ubiquitin and protein turnover in synapse function. Neuron. 2005;47(5):629–32.CrossRef Yi JJ, Ehlers MD. Ubiquitin and protein turnover in synapse function. Neuron. 2005;47(5):629–32.CrossRef
29.
go back to reference Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, et al. UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Rep. 2015;12(3):449–61.CrossRef Sun J, Zhu G, Liu Y, Standley S, Ji A, Tunuguntla R, et al. UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis. Cell Rep. 2015;12(3):449–61.CrossRef
30.
go back to reference Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12(10):683–91.CrossRef Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12(10):683–91.CrossRef
31.
go back to reference Tindall EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM. Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments. Hum Mutat. 2009;30(6):876–83.CrossRef Tindall EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM. Assessing high-resolution melt curve analysis for accurate detection of gene variants in complex DNA fragments. Hum Mutat. 2009;30(6):876–83.CrossRef
32.
go back to reference Kovac J, Macedoni Luksic M, Trebusak Podkrajsek K, Klancar G, Battelino T. Rare single nucleotide polymorphisms in the regulatory regions of the superoxide dismutase genes in autism spectrum disorder. Autism Res. 2014;7(1):138–44.CrossRef Kovac J, Macedoni Luksic M, Trebusak Podkrajsek K, Klancar G, Battelino T. Rare single nucleotide polymorphisms in the regulatory regions of the superoxide dismutase genes in autism spectrum disorder. Autism Res. 2014;7(1):138–44.CrossRef
Metadata
Title
Mutation screening of the UBE3A gene in Chinese Han population with autism
Authors
Xue Zhao
Ran Zhang
Shunying Yu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2020
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-020-03000-5

Other articles of this Issue 1/2020

BMC Psychiatry 1/2020 Go to the issue