Skip to main content
Top
Published in: Molecular Autism 1/2022

Open Access 01-12-2022 | Autism Spectrum Disorder | Research

Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish

Authors: Josiah D. Zoodsma, Emma J. Keegan, Gabrielle R. Moody, Ashwin A. Bhandiwad, Amalia J. Napoli, Harold A. Burgess, Lonnie P. Wollmuth, Howard I. Sirotkin

Published in: Molecular Autism | Issue 1/2022

Login to get access

Abstract

Background

Autism spectrum disorder (ASD), like many neurodevelopmental disorders, has complex and varied etiologies. Advances in genome sequencing have identified multiple candidate genes associated with ASD, including dozens of missense and nonsense mutations in the NMDAR subunit GluN2B, encoded by GRIN2B. NMDARs are glutamate-gated ion channels with key synaptic functions in excitatory neurotransmission. How alterations in these proteins impact neurodevelopment is poorly understood, in part because knockouts of GluN2B in rodents are lethal.

Methods

Here, we use CRISPR-Cas9 to generate zebrafish lacking GluN2B (grin2B−/−). Using these fish, we run an array of behavioral tests and perform whole-brain larval imaging to assay developmental roles and functions of GluN2B.

Results

We demonstrate that zebrafish GluN2B displays similar structural and functional properties to human GluN2B. Zebrafish lacking GluN2B (grin2B−/−) surprisingly survive into adulthood. Given the prevalence of social deficits in ASD, we assayed social preference in the grin2B−/− fish. Wild-type fish develop a strong social preference by 3 weeks post fertilization. In contrast, grin2B−/− fish at this age exhibit significantly reduced social preference. Notably, the lack of GluN2B does not result in a broad disruption of neurodevelopment, as grin2B−/− larvae do not show alterations in spontaneous or photic-evoked movements, are capable of prey capture, and exhibit learning. Whole-brain imaging of grin2B−/− larvae revealed reduction of an inhibitory neuron marker in the subpallium, a region linked to ASD in humans, but showed that overall brain size and E/I balance in grin2B−/− is comparable to wild type.

Limitations

Zebrafish lacking GluN2B, while useful in studying developmental roles of GluN2B, are unlikely to model nuanced functional alterations of human missense mutations that are not complete loss of function. Additionally, detailed mammalian homologies for larval zebrafish brain subdivisions at the age of whole-brain imaging are not fully resolved.

Conclusions

We demonstrate that zebrafish completely lacking the GluN2B subunit of the NMDAR, unlike rodent models, are viable into adulthood. Notably, they exhibit a highly specific deficit in social behavior. As such, this zebrafish model affords a unique opportunity to study the roles of GluN2B in ASD etiologies and establish a disease-relevant in vivo model for future studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: a systematic review update. Autism Res. 2022;15(5):778–90.PubMedPubMedCentralCrossRef Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: a systematic review update. Autism Res. 2022;15(5):778–90.PubMedPubMedCentralCrossRef
3.
go back to reference Roman-Urrestarazu A, van Kessel R, Allison C, Matthews FE, Brayne C, Baron-Cohen S. Association of race/ethnicity and social disadvantage with autism prevalence in 7 million school children in England. JAMA Pediatr. 2021;175(6):e210054.PubMedPubMedCentralCrossRef Roman-Urrestarazu A, van Kessel R, Allison C, Matthews FE, Brayne C, Baron-Cohen S. Association of race/ethnicity and social disadvantage with autism prevalence in 7 million school children in England. JAMA Pediatr. 2021;175(6):e210054.PubMedPubMedCentralCrossRef
4.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: APA; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: APA; 2013.CrossRef
5.
go back to reference Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23.PubMedPubMedCentralCrossRef Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1–23.PubMedPubMedCentralCrossRef
6.
go back to reference Fombonne E. A wrinkle in time: from early signs to a diagnosis of autism. J Am Acad Child Adolesc Psychiatry. 2009;48(5):463–4.PubMedCrossRef Fombonne E. A wrinkle in time: from early signs to a diagnosis of autism. J Am Acad Child Adolesc Psychiatry. 2009;48(5):463–4.PubMedCrossRef
7.
go back to reference Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285–99.PubMedPubMedCentralCrossRef Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285–99.PubMedPubMedCentralCrossRef
8.
go back to reference O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.PubMedPubMedCentralCrossRef O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.PubMedPubMedCentralCrossRef
9.
go back to reference De Rubeis S, Buxbaum JD. Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep. 2015;15(6):36.PubMedCrossRef De Rubeis S, Buxbaum JD. Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep. 2015;15(6):36.PubMedCrossRef
10.
go back to reference Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49(4):515–26.PubMedPubMedCentralCrossRef Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49(4):515–26.PubMedPubMedCentralCrossRef
11.
go back to reference Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–84.PubMedPubMedCentralCrossRef Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–84.PubMedPubMedCentralCrossRef
12.
go back to reference Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev. 2021;73(4):298–487.PubMedCrossRef Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev. 2021;73(4):298–487.PubMedCrossRef
13.
go back to reference Chakraborty A, Murphy S, Coleman N. The role of NMDA receptors in neural stem cell proliferation and differentiation. Stem Cells Dev. 2017;26(11):798–807.PubMedCrossRef Chakraborty A, Murphy S, Coleman N. The role of NMDA receptors in neural stem cell proliferation and differentiation. Stem Cells Dev. 2017;26(11):798–807.PubMedCrossRef
14.
15.
go back to reference Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.PubMedCrossRef Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.PubMedCrossRef
16.
go back to reference Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol. 2015;88(1):203–17.PubMedPubMedCentralCrossRef Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol. 2015;88(1):203–17.PubMedPubMedCentralCrossRef
17.
go back to reference Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17(2):125–34.PubMedCrossRef Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17(2):125–34.PubMedCrossRef
18.
go back to reference Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci. 2017;20(8):1043–51.PubMedPubMedCentralCrossRef Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci. 2017;20(8):1043–51.PubMedPubMedCentralCrossRef
19.
go back to reference O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.PubMedPubMedCentralCrossRef O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.PubMedPubMedCentralCrossRef
20.
go back to reference Nacher J, McEwen BS. The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus. 2006;16(3):267–70.PubMedCrossRef Nacher J, McEwen BS. The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus. 2006;16(3):267–70.PubMedCrossRef
21.
go back to reference Bagasrawala I, Memi F, Radonjić VN, Zecevic N. N-Methyl d-aspartate receptor expression patterns in the human fetal cerebral cortex. Cereb Cortex. 2017;27(11):5041–53.PubMed Bagasrawala I, Memi F, Radonjić VN, Zecevic N. N-Methyl d-aspartate receptor expression patterns in the human fetal cerebral cortex. Cereb Cortex. 2017;27(11):5041–53.PubMed
22.
go back to reference Bell S, Maussion G, Jefri M, Peng H, Theroux JF, Silveira H, et al. Disruption of GRIN2B impairs differentiation in human neurons. Stem Cell Rep. 2018;11(1):183–96.CrossRef Bell S, Maussion G, Jefri M, Peng H, Theroux JF, Silveira H, et al. Disruption of GRIN2B impairs differentiation in human neurons. Stem Cell Rep. 2018;11(1):183–96.CrossRef
23.
go back to reference Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron. 1996;16(2):333–44.PubMedCrossRef Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron. 1996;16(2):333–44.PubMedCrossRef
24.
go back to reference Rea V, Van Raay TJ. Using zebrafish to model autism spectrum disorder: a comparison of ASD risk genes between zebrafish and their mammalian counterparts. Front Mol Neurosci. 2020;13:575575.PubMedPubMedCentralCrossRef Rea V, Van Raay TJ. Using zebrafish to model autism spectrum disorder: a comparison of ASD risk genes between zebrafish and their mammalian counterparts. Front Mol Neurosci. 2020;13:575575.PubMedPubMedCentralCrossRef
25.
go back to reference Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nat Commun. 2018;9(1):957.PubMedPubMedCentralCrossRef Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Nat Commun. 2018;9(1):957.PubMedPubMedCentralCrossRef
26.
go back to reference Fontana BD, Muller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, et al. Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol. 2022;208:101993.PubMedCrossRef Fontana BD, Muller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, et al. Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol. 2022;208:101993.PubMedCrossRef
27.
go back to reference Cox JA, Kucenas S, Voigt MM. Molecular characterization and embryonic expression of the family of N-methyl-d-aspartate receptor subunit genes in the zebrafish. Dev Dyn. 2005;234(3):756–66.PubMedCrossRef Cox JA, Kucenas S, Voigt MM. Molecular characterization and embryonic expression of the family of N-methyl-d-aspartate receptor subunit genes in the zebrafish. Dev Dyn. 2005;234(3):756–66.PubMedCrossRef
29.
go back to reference Janouschek H, Chase HW, Sharkey RJ, Peterson ZJ, Camilleri JA, Abel T, et al. The functional neural architecture of dysfunctional reward processing in autism. Neuroimage Clin. 2021;31:102700.PubMedPubMedCentralCrossRef Janouschek H, Chase HW, Sharkey RJ, Peterson ZJ, Camilleri JA, Abel T, et al. The functional neural architecture of dysfunctional reward processing in autism. Neuroimage Clin. 2021;31:102700.PubMedPubMedCentralCrossRef
30.
go back to reference Yelshansky MV, Sobolevsky AI, Jatzke C, Wollmuth LP. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J Neurosci. 2004;24(20):4728–36.PubMedPubMedCentralCrossRef Yelshansky MV, Sobolevsky AI, Jatzke C, Wollmuth LP. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J Neurosci. 2004;24(20):4728–36.PubMedPubMedCentralCrossRef
31.
go back to reference Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP. A molecular determinant of subtype-specific desensitization in ionotropic glutamate receptors. J Neurosci. 2016;36(9):2617–22.PubMedPubMedCentralCrossRef Alsaloum M, Kazi R, Gan Q, Amin J, Wollmuth LP. A molecular determinant of subtype-specific desensitization in ionotropic glutamate receptors. J Neurosci. 2016;36(9):2617–22.PubMedPubMedCentralCrossRef
32.
go back to reference Amin JB, Salussolia CL, Chan K, Regan MC, Dai J, Zhou HX, et al. Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J Gen Physiol. 2017;149(6):661–80.PubMedPubMedCentralCrossRef Amin JB, Salussolia CL, Chan K, Regan MC, Dai J, Zhou HX, et al. Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J Gen Physiol. 2017;149(6):661–80.PubMedPubMedCentralCrossRef
33.
go back to reference Geng Y, Zhang T, Godar SC, Pluimer BR, Harrison DL, Nath AK, et al. Top2a promotes the development of social behavior via PRC2 and H3K27me3. bioRxiv. 2021;54:368. Geng Y, Zhang T, Godar SC, Pluimer BR, Harrison DL, Nath AK, et al. Top2a promotes the development of social behavior via PRC2 and H3K27me3. bioRxiv. 2021;54:368.
34.
go back to reference Zoodsma JD, Chan K, Bhandiwad AA, Golann D, Liu G, Syed S, et al. A model to study NMDA receptors in early nervous system development. J Neurosci. 2020;9:3748. Zoodsma JD, Chan K, Bhandiwad AA, Golann D, Liu G, Syed S, et al. A model to study NMDA receptors in early nervous system development. J Neurosci. 2020;9:3748.
35.
go back to reference Ghanem N, Jarinova O, Amores A, Long Q, Hatch G, Park BK, et al. Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res. 2003;13(4):533–43.PubMedPubMedCentralCrossRef Ghanem N, Jarinova O, Amores A, Long Q, Hatch G, Park BK, et al. Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res. 2003;13(4):533–43.PubMedPubMedCentralCrossRef
36.
go back to reference Kinkhabwala A, Riley M, Koyama M, Monen J, Satou C, Kimura Y, et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA. 2011;108(3):1164–9.PubMedPubMedCentralCrossRef Kinkhabwala A, Riley M, Koyama M, Monen J, Satou C, Kimura Y, et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA. 2011;108(3):1164–9.PubMedPubMedCentralCrossRef
37.
39.
go back to reference Marquart GD, Tabor KM, Brown M, Strykowski JL, Varshney GK, LaFave MC, et al. A 3D searchable database of transgenic zebrafish Gal4 and Cre lines for functional neuroanatomy studies. Front Neural Circuits. 2015;9:78.PubMedPubMedCentralCrossRef Marquart GD, Tabor KM, Brown M, Strykowski JL, Varshney GK, LaFave MC, et al. A 3D searchable database of transgenic zebrafish Gal4 and Cre lines for functional neuroanatomy studies. Front Neural Circuits. 2015;9:78.PubMedPubMedCentralCrossRef
40.
go back to reference Gupta T, Marquart GD, Horstick EJ, Tabor KM, Pajevic S, Burgess HA. Morphometric analysis and neuroanatomical mapping of the zebrafish brain. Methods. 2018;150:49–62.PubMedPubMedCentralCrossRef Gupta T, Marquart GD, Horstick EJ, Tabor KM, Pajevic S, Burgess HA. Morphometric analysis and neuroanatomical mapping of the zebrafish brain. Methods. 2018;150:49–62.PubMedPubMedCentralCrossRef
41.
go back to reference Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16(7):565–6.PubMedCrossRef Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16(7):565–6.PubMedCrossRef
42.
go back to reference Amin JB, Leng X, Gochman A, Zhou HX, Wollmuth LP. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca(2+) permeability. Nat Commun. 2018;9(1):3748.PubMedPubMedCentralCrossRef Amin JB, Leng X, Gochman A, Zhou HX, Wollmuth LP. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca(2+) permeability. Nat Commun. 2018;9(1):3748.PubMedPubMedCentralCrossRef
43.
44.
go back to reference Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9.PubMedPubMedCentralCrossRef Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9.PubMedPubMedCentralCrossRef
45.
go back to reference Wollmuth LP, Sobolevsky AI. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 2004;27(6):321–8.PubMedCrossRef Wollmuth LP, Sobolevsky AI. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 2004;27(6):321–8.PubMedCrossRef
46.
48.
49.
go back to reference Brodkin ES. Social behavior phenotypes in fragile X syndrome, autism, and the Fmr1 knockout mouse: theoretical comment on McNaughton et al. (2008). Behav Neurosci. 2008;122(2):483–9.PubMedCrossRef Brodkin ES. Social behavior phenotypes in fragile X syndrome, autism, and the Fmr1 knockout mouse: theoretical comment on McNaughton et al. (2008). Behav Neurosci. 2008;122(2):483–9.PubMedCrossRef
50.
go back to reference Burgess HA, Granato M. Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol. 2007;210(Pt 14):2526–39.PubMedCrossRef Burgess HA, Granato M. Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol. 2007;210(Pt 14):2526–39.PubMedCrossRef
51.
go back to reference Emran F, Rihel J, Dowling JE. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp. 2008;20:e923. Emran F, Rihel J, Dowling JE. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp. 2008;20:e923.
53.
go back to reference Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H. A dedicated visual pathway for prey detection in larval zebrafish. Elife. 2014;3:e04878.PubMedCentralCrossRef Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H. A dedicated visual pathway for prey detection in larval zebrafish. Elife. 2014;3:e04878.PubMedCentralCrossRef
54.
go back to reference Oldfield CS, Grossrubatscher I, Chavez M, Hoagland A, Huth AR, Carroll EC, et al. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. Elife. 2020;9:e56619.PubMedPubMedCentralCrossRef Oldfield CS, Grossrubatscher I, Chavez M, Hoagland A, Huth AR, Carroll EC, et al. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. Elife. 2020;9:e56619.PubMedPubMedCentralCrossRef
55.
go back to reference El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–7.PubMedPubMedCentralCrossRef El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–7.PubMedPubMedCentralCrossRef
56.
go back to reference Courchesne E, Pramparo T, Gazestani VH, Lombardo MV, Pierce K, Lewis NE. The ASD living biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 2019;24(1):88–107.PubMedCrossRef Courchesne E, Pramparo T, Gazestani VH, Lombardo MV, Pierce K, Lewis NE. The ASD living biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 2019;24(1):88–107.PubMedCrossRef
57.
go back to reference Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: implications for interventions and therapeutics. World J Biol Psychiatry. 2016;17(3):174–86.PubMedCrossRef Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: implications for interventions and therapeutics. World J Biol Psychiatry. 2016;17(3):174–86.PubMedCrossRef
58.
go back to reference Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci. 2021;24(12):1648–59.PubMedCrossRef Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci. 2021;24(12):1648–59.PubMedCrossRef
59.
go back to reference Namba T, Ming GL, Song H, Waga C, Enomoto A, Kaibuchi K, et al. NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem. 2011;118(1):34–44.PubMedPubMedCentralCrossRef Namba T, Ming GL, Song H, Waga C, Enomoto A, Kaibuchi K, et al. NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via Disrupted-In-Schizophrenia 1 (DISC1). J Neurochem. 2011;118(1):34–44.PubMedPubMedCentralCrossRef
60.
go back to reference Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE, Simpraga S, et al. Measurement of excitation–inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep. 2020;10(1):9195.PubMedPubMedCentralCrossRef Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE, Simpraga S, et al. Measurement of excitation–inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep. 2020;10(1):9195.PubMedPubMedCentralCrossRef
61.
go back to reference Horiai M, Otsuka A, Hidema S, Hiraoka Y, Hayashi R, Miyazaki S, et al. Targeting oxytocin receptor (Oxtr)-expressing neurons in the lateral septum to restore social novelty in autism spectrum disorder mouse models. Sci Rep. 2020;10(1):22173.PubMedPubMedCentralCrossRef Horiai M, Otsuka A, Hidema S, Hiraoka Y, Hayashi R, Miyazaki S, et al. Targeting oxytocin receptor (Oxtr)-expressing neurons in the lateral septum to restore social novelty in autism spectrum disorder mouse models. Sci Rep. 2020;10(1):22173.PubMedPubMedCentralCrossRef
63.
go back to reference Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711–4.PubMedCrossRef Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711–4.PubMedCrossRef
64.
go back to reference Roy B, Ferdous J, Ali DW. NMDA receptors on zebrafish M authner cells require CaMKII-alpha for normal development. Dev Neurobiol. 2015;75(2):145–62.PubMedCrossRef Roy B, Ferdous J, Ali DW. NMDA receptors on zebrafish M authner cells require CaMKII-alpha for normal development. Dev Neurobiol. 2015;75(2):145–62.PubMedCrossRef
65.
go back to reference Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40(4):775–84.PubMedCrossRef Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40(4):775–84.PubMedCrossRef
67.
go back to reference Zimmermann FF, Gaspary KV, Siebel AM, Bonan CD. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res. 2016;311:368–74.PubMedCrossRef Zimmermann FF, Gaspary KV, Siebel AM, Bonan CD. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res. 2016;311:368–74.PubMedCrossRef
68.
go back to reference Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res. 2019;8:1940.CrossRef Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res. 2019;8:1940.CrossRef
69.
go back to reference XiangWei W, Jiang Y, Yuan H. De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physiol. 2018;2:27–35.PubMedCrossRef XiangWei W, Jiang Y, Yuan H. De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physiol. 2018;2:27–35.PubMedCrossRef
70.
go back to reference den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF. Generation and characterization of FMR1 knockout zebrafish. PLoS ONE. 2009;4(11):e7910.CrossRef den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF. Generation and characterization of FMR1 knockout zebrafish. PLoS ONE. 2009;4(11):e7910.CrossRef
71.
go back to reference Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle IA, Taylor MA, Blevins AS, et al. Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Nat Commun. 2022;13(1):895.PubMedPubMedCentralCrossRef Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle IA, Taylor MA, Blevins AS, et al. Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Nat Commun. 2022;13(1):895.PubMedPubMedCentralCrossRef
72.
go back to reference Constantin L, Poulsen RE, Scholz LA, Favre-Bulle IA, Taylor MA, Sun B, et al. Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome. BMC Biol. 2020;18(1):125.PubMedPubMedCentralCrossRef Constantin L, Poulsen RE, Scholz LA, Favre-Bulle IA, Taylor MA, Sun B, et al. Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome. BMC Biol. 2020;18(1):125.PubMedPubMedCentralCrossRef
73.
go back to reference Wu YJ, Hsu MT, Ng MC, Amstislavskaya TG, Tikhonova MA, Yang YL, et al. Fragile X mental retardation-1 knockout zebrafish shows precocious development in social behavior. Zebrafish. 2017;14(5):438–43.PubMedCrossRef Wu YJ, Hsu MT, Ng MC, Amstislavskaya TG, Tikhonova MA, Yang YL, et al. Fragile X mental retardation-1 knockout zebrafish shows precocious development in social behavior. Zebrafish. 2017;14(5):438–43.PubMedCrossRef
74.
go back to reference Kim L, He L, Maaswinkel H, Zhu L, Sirotkin H, Weng W. Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:40–9.PubMedCrossRef Kim L, He L, Maaswinkel H, Zhu L, Sirotkin H, Weng W. Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:40–9.PubMedCrossRef
75.
go back to reference Cercato MC, Vazquez CA, Kornisiuk E, Aguirre AI, Colettis N, Snitcofsky M, et al. GluN1 and GluN2A NMDA receptor subunits increase in the hippocampus during memory consolidation in the rat. Front Behav Neurosci. 2016;10:242.PubMed Cercato MC, Vazquez CA, Kornisiuk E, Aguirre AI, Colettis N, Snitcofsky M, et al. GluN1 and GluN2A NMDA receptor subunits increase in the hippocampus during memory consolidation in the rat. Front Behav Neurosci. 2016;10:242.PubMed
76.
go back to reference Zimmermann FF, Gaspary KV, Leite CE, De Paula CG, Bonan CD. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): a developmental behavior analysis. Neurotoxicol Teratol. 2015;52(Pt A):36–41.PubMedCrossRef Zimmermann FF, Gaspary KV, Leite CE, De Paula CG, Bonan CD. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): a developmental behavior analysis. Neurotoxicol Teratol. 2015;52(Pt A):36–41.PubMedCrossRef
77.
go back to reference Chen J, Lei L, Tian L, Hou F, Roper C, Ge X, et al. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): an aquatic model for autism. Neurotoxicol Teratol. 2018;66:8–16.PubMedPubMedCentralCrossRef Chen J, Lei L, Tian L, Hou F, Roper C, Ge X, et al. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): an aquatic model for autism. Neurotoxicol Teratol. 2018;66:8–16.PubMedPubMedCentralCrossRef
78.
go back to reference Chomiak T, Turner N, Hu B. What we have learned about autism spectrum disorder from valproic acid. Patholog Res Int. 2013;2013:712758.PubMedPubMedCentral Chomiak T, Turner N, Hu B. What we have learned about autism spectrum disorder from valproic acid. Patholog Res Int. 2013;2013:712758.PubMedPubMedCentral
79.
go back to reference Christensen J, Gronborg TK, Sorensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.PubMedPubMedCentralCrossRef Christensen J, Gronborg TK, Sorensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.PubMedPubMedCentralCrossRef
80.
go back to reference Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J Comp Neurol. 2012;520(3):633–55.PubMedCrossRef Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J Comp Neurol. 2012;520(3):633–55.PubMedCrossRef
81.
go back to reference Porter BA, Mueller T. The zebrafish amygdaloid complex—functional ground plan, molecular delineation, and everted topology. Front Neurosci. 2020;14:608.PubMedPubMedCentralCrossRef Porter BA, Mueller T. The zebrafish amygdaloid complex—functional ground plan, molecular delineation, and everted topology. Front Neurosci. 2020;14:608.PubMedPubMedCentralCrossRef
82.
go back to reference Wullimann MF, Rink E. The teleostean forebrain: a comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Res Bull. 2002;57(3–4):363–70.PubMedCrossRef Wullimann MF, Rink E. The teleostean forebrain: a comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Res Bull. 2002;57(3–4):363–70.PubMedCrossRef
84.
85.
go back to reference Suarez R, Gobius I, Richards LJ. Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci. 2014;8:497.PubMedPubMedCentralCrossRef Suarez R, Gobius I, Richards LJ. Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci. 2014;8:497.PubMedPubMedCentralCrossRef
Metadata
Title
Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish
Authors
Josiah D. Zoodsma
Emma J. Keegan
Gabrielle R. Moody
Ashwin A. Bhandiwad
Amalia J. Napoli
Harold A. Burgess
Lonnie P. Wollmuth
Howard I. Sirotkin
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2022
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-022-00516-3

Other articles of this Issue 1/2022

Molecular Autism 1/2022 Go to the issue