Skip to main content
Top
Published in: Molecular Autism 1/2021

Open Access 01-12-2021 | Autism Spectrum Disorder | Research

Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism

Authors: Thomas W. Frazier, Ritika Jaini, Robyn M. Busch, Matthew Wolf, Tammy Sadler, Patricia Klaas, Antonio Y. Hardan, Julian A. Martinez-Agosto, Mustafa Sahin, Charis Eng, the Developmental Synaptopathies Consortium

Published in: Molecular Autism | Issue 1/2021

Login to get access

Abstract

Background

PTEN is a well-established risk gene for autism spectrum disorder (ASD). Yet, little is known about how PTEN mutations and associated molecular processes influence neurobehavioral function in mutation carriers with (PTEN-ASD) and without ASD (PTEN no-ASD). The primary aim of the present study was to examine group differences in peripheral blood-derived PTEN pathway protein levels between PTEN-ASD, PTEN no-ASD, and idiopathic macrocephalic ASD patients (macro-ASD). Secondarily, associations between protein levels and neurobehavioral functions were examined in the full cohort.

Methods

Patients were recruited at four tertiary medical centers. Peripheral blood-derived protein levels from canonical PTEN pathways (PI3K/AKT and MAPK/ERK) were analyzed using Western blot analyses blinded to genotype and ASD status. Neurobehavioral measures included standardized assessments of global cognitive ability and multiple neurobehavioral domains. Analysis of variance models examined group differences in demographic, neurobehavioral, and protein measures. Bivariate correlations, structural models, and statistical learning procedures estimated associations between molecular and neurobehavioral variables. To complement patient data, Western blots for downstream proteins were generated to evaluate canonical PTEN pathways in the PTEN-m3m4 mouse model.

Results

Participants included 61 patients (25 PTEN-ASD, 16 PTEN no-ASD, and 20 macro-ASD). Decreased PTEN and S6 were observed in both PTEN mutation groups. Reductions in MnSOD and increases in P-S6 were observed in ASD groups. Elevated neural P-AKT/AKT and P-S6/S6 from PTEN murine models parallel our patient observations. Patient PTEN and AKT levels were independently associated with global cognitive ability, and p27 expression was associated with frontal sub-cortical functions. As a group, molecular measures added significant predictive value to several neurobehavioral domains over and above PTEN mutation status.

Limitations

Sample sizes were small, precluding within-group analyses. Protein and neurobehavioral data were limited to a single evaluation. A small number of patients were excluded with invalid protein data, and cognitively impaired patients had missing data on some assessments.

Conclusions

Several canonical PTEN pathway molecules appear to influence the presence of ASD and modify neurobehavioral function in PTEN mutation patients. Protein assays of the PTEN pathway may be useful for predicting neurobehavioral outcomes in PTEN patients. Future longitudinal analyses are needed to replicate these findings and evaluate within-group relationships between protein and neurobehavioral measures.

Trial registration

ClinicalTrials.gov Identifier NCT02461446
Appendix
Available only for authorised users
Literature
2.
go back to reference van Diepen MT, Eickholt BJ. Function of PTEN during the formation and maintenance of neuronal circuits in the brain. Dev Neurosci. 2008;30(1–3):59–64.PubMedCrossRef van Diepen MT, Eickholt BJ. Function of PTEN during the formation and maintenance of neuronal circuits in the brain. Dev Neurosci. 2008;30(1–3):59–64.PubMedCrossRef
3.
go back to reference Delatycki MB, Danks A, Churchyard A, Zhou X-P, Eng C. De novo germline PTEN mutation in a man with Lhermitte–Duclos disease which arose on the paternal chromosome and was transmitted to his child with polydactyly and Wormian bones. J Med Genet. 2003;40:e92.PubMedPubMedCentralCrossRef Delatycki MB, Danks A, Churchyard A, Zhou X-P, Eng C. De novo germline PTEN mutation in a man with Lhermitte–Duclos disease which arose on the paternal chromosome and was transmitted to his child with polydactyly and Wormian bones. J Med Genet. 2003;40:e92.PubMedPubMedCentralCrossRef
5.
go back to reference Buxbaum JDC, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, Anckarsäter H, et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet Part B N(europsychiatric Genet). 2007;144:484–91.CrossRef Buxbaum JDC, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, Anckarsäter H, et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet Part B N(europsychiatric Genet). 2007;144:484–91.CrossRef
6.
go back to reference Butler MG, Dasouki MJ, Zhou X-P, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42:318–21.PubMedPubMedCentralCrossRef Butler MG, Dasouki MJ, Zhou X-P, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42:318–21.PubMedPubMedCentralCrossRef
7.
8.
go back to reference McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3(3):137–41.CrossRefPubMed McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3(3):137–41.CrossRefPubMed
9.
go back to reference Orrico A, Galli L, Buoni S, Orsi A, Vonella G, Sorrentino V. Novel PTEN mutations in neurodevelopmental disorders and macrocephaly. Clin Genet. 2009;75(2):195–8.PubMedCrossRef Orrico A, Galli L, Buoni S, Orsi A, Vonella G, Sorrentino V. Novel PTEN mutations in neurodevelopmental disorders and macrocephaly. Clin Genet. 2009;75(2):195–8.PubMedCrossRef
10.
go back to reference Varga EA, Pastore M, Prior T, Herman GE, McBride KL. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009;11(2):111–7.CrossRefPubMed Varga EA, Pastore M, Prior T, Herman GE, McBride KL. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009;11(2):111–7.CrossRefPubMed
11.
go back to reference Hobert JA, Embacher R, Mester JL, Frazier TW, Eng C. Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly. Eur J Hum Genet. 2014;22(2):273–6.CrossRefPubMed Hobert JA, Embacher R, Mester JL, Frazier TW, Eng C. Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly. Eur J Hum Genet. 2014;22(2):273–6.CrossRefPubMed
12.
go back to reference Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A. Increasing knowledge of PTEN germline mutations: two additional patients with autism and macrocephaly. Am J Med Genet. 2007;143A:589–93.PubMedCrossRef Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A. Increasing knowledge of PTEN germline mutations: two additional patients with autism and macrocephaly. Am J Med Genet. 2007;143A:589–93.PubMedCrossRef
13.
go back to reference Tilot AK, Frazier TW 2nd, Eng C. Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics. 2015;12(3):609–19.PubMedPubMedCentralCrossRef Tilot AK, Frazier TW 2nd, Eng C. Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics. 2015;12(3):609–19.PubMedPubMedCentralCrossRef
14.
go back to reference Yuen RK, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11.PubMedCentralCrossRef Yuen RK, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11.PubMedCentralCrossRef
15.
go back to reference Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedPubMedCentralCrossRef Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedPubMedCentralCrossRef
16.
go back to reference O’Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595.PubMedCrossRef O’Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595.PubMedCrossRef
17.
go back to reference Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature. 2020;586(7827):80–6.PubMedCrossRef Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature. 2020;586(7827):80–6.PubMedCrossRef
18.
go back to reference Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41.PubMedPubMedCentralCrossRef Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237–41.PubMedPubMedCentralCrossRef
19.
go back to reference Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA. 2015;314(9):895–903.PubMedCrossRef Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA. 2015;314(9):895–903.PubMedCrossRef
20.
go back to reference Schaaf CP, Betancur C, Yuen RKC, Parr JR, Skuse DH, Gallagher L, et al. A framework for an evidence-based gene list relevant to autism spectrum disorder. Nat Rev Genet. 2020;21(6):367–76.PubMedCrossRef Schaaf CP, Betancur C, Yuen RKC, Parr JR, Skuse DH, Gallagher L, et al. A framework for an evidence-based gene list relevant to autism spectrum disorder. Nat Rev Genet. 2020;21(6):367–76.PubMedCrossRef
21.
go back to reference Hansen-Kiss E, Beinkampen S, Adler B, Frazier T, Prior T, Erdman S, et al. A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. J Med Genet. 2017;54(7):471–8.PubMedCrossRef Hansen-Kiss E, Beinkampen S, Adler B, Frazier T, Prior T, Erdman S, et al. A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. J Med Genet. 2017;54(7):471–8.PubMedCrossRef
22.
go back to reference Ciaccio C, Saletti V, D’Arrigo S, Esposito S, Alfei E, Moroni I, et al. Clinical spectrum of PTEN mutation in pediatric patients. A bicenter experience. Eur J Med Genet. 2018;62:103596.PubMedCrossRef Ciaccio C, Saletti V, D’Arrigo S, Esposito S, Alfei E, Moroni I, et al. Clinical spectrum of PTEN mutation in pediatric patients. A bicenter experience. Eur J Med Genet. 2018;62:103596.PubMedCrossRef
23.
go back to reference Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, et al. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci. 2012;32(17):5880–90.PubMedPubMedCentralCrossRef Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, et al. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci. 2012;32(17):5880–90.PubMedPubMedCentralCrossRef
24.
go back to reference Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res. 2004;64(21):7773–9.PubMedCrossRef Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res. 2004;64(21):7773–9.PubMedCrossRef
25.
go back to reference Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50:377–88.PubMedPubMedCentralCrossRef Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50:377–88.PubMedPubMedCentralCrossRef
26.
go back to reference Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, et al. Pten regulates neuronal soma size: a mouse model of Lhermitte–Duclos disease. Nat Genet. 2001;29(4):404–11.PubMedCrossRef Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, et al. Pten regulates neuronal soma size: a mouse model of Lhermitte–Duclos disease. Nat Genet. 2001;29(4):404–11.PubMedCrossRef
27.
go back to reference Page DT, Kuti OJ, Prestia C, Sur M. Haploinsufficiency for Pten and Serotonin transporter cooperatively influences brain size and social behavior. Proc Natl Acad Sci USA. 2009;106(6):1989–94.CrossRefPubMedPubMedCentral Page DT, Kuti OJ, Prestia C, Sur M. Haploinsufficiency for Pten and Serotonin transporter cooperatively influences brain size and social behavior. Proc Natl Acad Sci USA. 2009;106(6):1989–94.CrossRefPubMedPubMedCentral
28.
go back to reference Tilot AK, Bebek G, Niazi F, Altemus JB, Romigh T, Frazier TW, et al. Neural transcriptome of constitutional Pten dysfunction in mice and its relevance to human idiopathic autism spectrum disorder. Mol Psychiatry. 2016;21:118–25.PubMedCrossRef Tilot AK, Bebek G, Niazi F, Altemus JB, Romigh T, Frazier TW, et al. Neural transcriptome of constitutional Pten dysfunction in mice and its relevance to human idiopathic autism spectrum disorder. Mol Psychiatry. 2016;21:118–25.PubMedCrossRef
29.
go back to reference Tilot AK, Gaugler MK, Yu Q, Romigh T, Yu W, Miller RH, et al. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production. Hum Mol Genet. 2014;23(12):3212–27.PubMedPubMedCentralCrossRef Tilot AK, Gaugler MK, Yu Q, Romigh T, Yu W, Miller RH, et al. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production. Hum Mol Genet. 2014;23(12):3212–27.PubMedPubMedCentralCrossRef
31.
go back to reference Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61.PubMedCrossRef Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61.PubMedCrossRef
32.
go back to reference Fishman I, Keown CL, Lincoln AJ, Pineda JA, Muller RA. Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry. 2014;71(7):751–60.PubMedPubMedCentralCrossRef Fishman I, Keown CL, Lincoln AJ, Pineda JA, Muller RA. Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry. 2014;71(7):751–60.PubMedPubMedCentralCrossRef
33.
go back to reference Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. 2015;20(9):1132–8.PubMedCrossRef Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. 2015;20(9):1132–8.PubMedCrossRef
34.
go back to reference Busch RM, Chapin JS, Mester J, Ferguson L, Haut JS, Frazier TW, et al. Cognitive characteristics of PTEN hamartoma tumor syndromes. Genet Med. 2013;15(7):548–53.PubMedPubMedCentralCrossRef Busch RM, Chapin JS, Mester J, Ferguson L, Haut JS, Frazier TW, et al. Cognitive characteristics of PTEN hamartoma tumor syndromes. Genet Med. 2013;15(7):548–53.PubMedPubMedCentralCrossRef
35.
go back to reference Busch RM, Srivastava S, Hogue O, Frazier TW, Klaas P, Hardan A, et al. Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Transl Psychiatry. 2019;9(1):253.PubMedPubMedCentralCrossRef Busch RM, Srivastava S, Hogue O, Frazier TW, Klaas P, Hardan A, et al. Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Transl Psychiatry. 2019;9(1):253.PubMedPubMedCentralCrossRef
36.
go back to reference Muhle RA, Reed HE, Stratigos KA, Veenstra-VanderWeele J. The emerging clinical neuroscience of autism spectrum disorder: a review. JAMA Psychiatry. 2018;75(5):514–23.PubMedCrossRef Muhle RA, Reed HE, Stratigos KA, Veenstra-VanderWeele J. The emerging clinical neuroscience of autism spectrum disorder: a review. JAMA Psychiatry. 2018;75(5):514–23.PubMedCrossRef
37.
go back to reference Hoang N, Cytrynbaum C, Scherer SW. Communicating complex genomic information: a counselling approach derived from research experience with autism spectrum disorder. Patient Educ Couns. 2018;101(2):352–61.PubMedCrossRef Hoang N, Cytrynbaum C, Scherer SW. Communicating complex genomic information: a counselling approach derived from research experience with autism spectrum disorder. Patient Educ Couns. 2018;101(2):352–61.PubMedCrossRef
38.
go back to reference Tan MH, Mester J, Peterson C, Yang Y, Chen JL, Rybicki LA, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2012;88(1):42–56.CrossRef Tan MH, Mester J, Peterson C, Yang Y, Chen JL, Rybicki LA, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2012;88(1):42–56.CrossRef
39.
go back to reference Jaini R, Loya MG, King AT, Thacker S, Sarn NB, Yu Q, et al. Germline PTEN mutations are associated with a skewed peripheral immune repertoire in humans and mice. Hum Mol Genet. 2020;29(14):2353–64.PubMedCrossRefPubMedCentral Jaini R, Loya MG, King AT, Thacker S, Sarn NB, Yu Q, et al. Germline PTEN mutations are associated with a skewed peripheral immune repertoire in humans and mice. Hum Mol Genet. 2020;29(14):2353–64.PubMedCrossRefPubMedCentral
41.
go back to reference Little RJ, Rubin DB. Statistical analysis with missing data. 2nd ed. New York: Wiley; 2002.CrossRef Little RJ, Rubin DB. Statistical analysis with missing data. 2nd ed. New York: Wiley; 2002.CrossRef
42.
go back to reference Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147–77.PubMedCrossRef Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7(2):147–77.PubMedCrossRef
43.
44.
go back to reference Muthén BO, Muthén LK, Asparouhov T. Regression and mediation analysis using MPlus. Los Angeles: Muthén & Muthén; 2016. Muthén BO, Muthén LK, Asparouhov T. Regression and mediation analysis using MPlus. Los Angeles: Muthén & Muthén; 2016.
45.
go back to reference Corp IBM. IBM SPSS Statistics for Windows. 260th ed. Armonk: IBM Corp; 2018. Corp IBM. IBM SPSS Statistics for Windows. 260th ed. Armonk: IBM Corp; 2018.
46.
go back to reference Muthén LK, Muthén BO. Mplus User’s Guide. 7th ed. Los Angeles: Muthén & Muthén; 1998. Muthén LK, Muthén BO. Mplus User’s Guide. 7th ed. Los Angeles: Muthén & Muthén; 1998.
47.
go back to reference Zablotsky B, Black LI, Maenner MJ, Schieve LA, Danielson ML, Bitsko RH, et al. Prevalence and trends of developmental disabilities among children in the united states: 2009–2017. Pediatrics. 2019;144(4):e20190811.PubMedCrossRef Zablotsky B, Black LI, Maenner MJ, Schieve LA, Danielson ML, Bitsko RH, et al. Prevalence and trends of developmental disabilities among children in the united states: 2009–2017. Pediatrics. 2019;144(4):e20190811.PubMedCrossRef
48.
go back to reference Mighell TL, Evans-Dutson S, O’Roak BJ. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. Am J Hum Genet. 2018;102(5):943–55.PubMedPubMedCentralCrossRef Mighell TL, Evans-Dutson S, O’Roak BJ. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. Am J Hum Genet. 2018;102(5):943–55.PubMedPubMedCentralCrossRef
49.
go back to reference Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50(6):874–82.PubMedPubMedCentralCrossRef Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50(6):874–82.PubMedPubMedCentralCrossRef
50.
go back to reference Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell. 2014;157(3):595–610.PubMedPubMedCentralCrossRef Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell. 2014;157(3):595–610.PubMedPubMedCentralCrossRef
51.
go back to reference Post KL, Belmadani M, Ganguly P, Meili F, Dingwall R, McDiarmid TA, et al. Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat Commun. 2020;11(1):2073.PubMedPubMedCentralCrossRef Post KL, Belmadani M, Ganguly P, Meili F, Dingwall R, McDiarmid TA, et al. Multi-model functionalization of disease-associated PTEN missense mutations identifies multiple molecular mechanisms underlying protein dysfunction. Nat Commun. 2020;11(1):2073.PubMedPubMedCentralCrossRef
52.
go back to reference Ganesan H, Balasubramanian V, Iyer M, Venugopal A, Subramaniam MD, Cho SG, et al. mTOR signalling pathway—a root cause for idiopathic autism? BMB Rep. 2019;52(7):424–33.PubMedPubMedCentralCrossRef Ganesan H, Balasubramanian V, Iyer M, Venugopal A, Subramaniam MD, Cho SG, et al. mTOR signalling pathway—a root cause for idiopathic autism? BMB Rep. 2019;52(7):424–33.PubMedPubMedCentralCrossRef
53.
go back to reference Yehia L, Seyfi M, Niestroj LM, Padmanabhan R, Ni Y, Frazier TW, et al. Copy number variation and clinical outcomes in patients with germline PTEN mutations. JAMA Netw Open. 2020;3(1):e1920415.PubMedPubMedCentralCrossRef Yehia L, Seyfi M, Niestroj LM, Padmanabhan R, Ni Y, Frazier TW, et al. Copy number variation and clinical outcomes in patients with germline PTEN mutations. JAMA Netw Open. 2020;3(1):e1920415.PubMedPubMedCentralCrossRef
54.
go back to reference Yehia L, Ni Y, Feng F, Seyfi M, Sadler T, Frazier TW, et al. Distinct alterations in tricarboxylic acid cycle metabolites associate with cancer and autism phenotypes in cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome. Am J Hum Genet. 2019;105(4):813–21.PubMedPubMedCentralCrossRef Yehia L, Ni Y, Feng F, Seyfi M, Sadler T, Frazier TW, et al. Distinct alterations in tricarboxylic acid cycle metabolites associate with cancer and autism phenotypes in cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome. Am J Hum Genet. 2019;105(4):813–21.PubMedPubMedCentralCrossRef
55.
go back to reference Kern JK, Jones AM. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health Part B. 2006;9(6):485–99.CrossRef Kern JK, Jones AM. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health Part B. 2006;9(6):485–99.CrossRef
56.
go back to reference Abruzzo PM, Matte A, Bolotta A, Federti E, Ghezzo A, Guarnieri T, et al. Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder. J Transl Med. 2019;17(1):332.PubMedPubMedCentralCrossRef Abruzzo PM, Matte A, Bolotta A, Federti E, Ghezzo A, Guarnieri T, et al. Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder. J Transl Med. 2019;17(1):332.PubMedPubMedCentralCrossRef
57.
go back to reference Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290–314.PubMedCrossRef Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290–314.PubMedCrossRef
58.
go back to reference Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE. 2008;3(11):e3815.PubMedPubMedCentralCrossRef Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE. 2008;3(11):e3815.PubMedPubMedCentralCrossRef
59.
go back to reference Yenkoyan K, Harutyunyan H, Harutyunyan A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic Biol Med. 2018;123:85–95.PubMedCrossRef Yenkoyan K, Harutyunyan H, Harutyunyan A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic Biol Med. 2018;123:85–95.PubMedCrossRef
60.
go back to reference Smith AM, Natowicz MR, Braas D, Ludwig MA, Ney DM, Donley ELR, et al. A metabolomics approach to screening for autism risk in the children’s autism metabolome project. Autism Res. 2020;13(8):1270–85.PubMedPubMedCentralCrossRef Smith AM, Natowicz MR, Braas D, Ludwig MA, Ney DM, Donley ELR, et al. A metabolomics approach to screening for autism risk in the children’s autism metabolome project. Autism Res. 2020;13(8):1270–85.PubMedPubMedCentralCrossRef
61.
go back to reference Lustgarten MS, Jang YC, Liu Y, Qi W, Qin Y, Dahia PL, et al. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging. Aging Cell. 2011;10(3):493–505.PubMedCrossRef Lustgarten MS, Jang YC, Liu Y, Qi W, Qin Y, Dahia PL, et al. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging. Aging Cell. 2011;10(3):493–505.PubMedCrossRef
62.
go back to reference Larson JC, Mostofsky SH. Motor deficits in autism. In: Tuchman R, Rapin I, editors. Autism: a neurological disorder of early brain development. London: Mac Keith Press; 2006. Larson JC, Mostofsky SH. Motor deficits in autism. In: Tuchman R, Rapin I, editors. Autism: a neurological disorder of early brain development. London: Mac Keith Press; 2006.
63.
go back to reference Dewey D, Cantell M, Crawford SG. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. J Int Neuropsychol Soc. 2007;13(2):246–56.PubMedCrossRef Dewey D, Cantell M, Crawford SG. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. J Int Neuropsychol Soc. 2007;13(2):246–56.PubMedCrossRef
64.
go back to reference Licari MK, Alvares GA, Varcin K, Evans KL, Cleary D, Reid SL, et al. Prevalence of motor difficulties in autism spectrum disorder: analysis of a population-based cohort. Autism Res. 2020;13(2):298–306.PubMedCrossRef Licari MK, Alvares GA, Varcin K, Evans KL, Cleary D, Reid SL, et al. Prevalence of motor difficulties in autism spectrum disorder: analysis of a population-based cohort. Autism Res. 2020;13(2):298–306.PubMedCrossRef
65.
66.
go back to reference Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal. 2020;75:109746.PubMedCrossRef Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal. 2020;75:109746.PubMedCrossRef
67.
go back to reference Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542(7641):348–51.PubMedPubMedCentralCrossRef Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542(7641):348–51.PubMedPubMedCentralCrossRef
68.
go back to reference Piven J, Elison JT, Zylka MJ. Toward a conceptual framework for early brain and behavior development in autism. Mol Psychiatry. 2018;23(1):165.PubMedCrossRef Piven J, Elison JT, Zylka MJ. Toward a conceptual framework for early brain and behavior development in autism. Mol Psychiatry. 2018;23(1):165.PubMedCrossRef
69.
go back to reference Lainhart JE. Increased rate of head growth during infancy in autism. J Am Med Assoc. 2003;290:393–4.CrossRef Lainhart JE. Increased rate of head growth during infancy in autism. J Am Med Assoc. 2003;290:393–4.CrossRef
70.
go back to reference Lainhart JE, Bigler ED, Bocian M, Coon H, Dinh E, Dawson G, et al. Head circumference and height in autism: a study by the collaborative program of excellence in autism. Am J Med Genet A. 2006;140(21):2257–74.PubMedPubMedCentralCrossRef Lainhart JE, Bigler ED, Bocian M, Coon H, Dinh E, Dawson G, et al. Head circumference and height in autism: a study by the collaborative program of excellence in autism. Am J Med Genet A. 2006;140(21):2257–74.PubMedPubMedCentralCrossRef
71.
go back to reference Winden KD, Ebrahimi-Fakhari D, Sahin M. Abnormal mTOR activation in autism. Annu Rev Neurosci. 2018;41:1–23.PubMedCrossRef Winden KD, Ebrahimi-Fakhari D, Sahin M. Abnormal mTOR activation in autism. Annu Rev Neurosci. 2018;41:1–23.PubMedCrossRef
72.
go back to reference Zhang J, Gao Z, Ye J. Phosphorylation and degradation of S6K1 (p70S6K1) in response to persistent JNK1 activation. Biochim Biophys Acta. 2013;1832(12):1980–8.PubMedCrossRef Zhang J, Gao Z, Ye J. Phosphorylation and degradation of S6K1 (p70S6K1) in response to persistent JNK1 activation. Biochim Biophys Acta. 2013;1832(12):1980–8.PubMedCrossRef
Metadata
Title
Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism
Authors
Thomas W. Frazier
Ritika Jaini
Robyn M. Busch
Matthew Wolf
Tammy Sadler
Patricia Klaas
Antonio Y. Hardan
Julian A. Martinez-Agosto
Mustafa Sahin
Charis Eng
the Developmental Synaptopathies Consortium
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2021
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-020-00406-6

Other articles of this Issue 1/2021

Molecular Autism 1/2021 Go to the issue