Skip to main content
Top
Published in: Molecular Autism 1/2019

Open Access 01-12-2019 | Autism Spectrum Disorder | Research

Biological motion perception in autism spectrum disorder: a meta-analysis

Authors: Greta Krasimirova Todorova, Rosalind Elizabeth Mcbean Hatton, Frank Earl Pollick

Published in: Molecular Autism | Issue 1/2019

Login to get access

Abstract

Background

Biological motion, namely the movement of others, conveys information that allows the identification of affective states and intentions. This makes it an important avenue of research in autism spectrum disorder where social functioning is one of the main areas of difficulty. We aimed to create a quantitative summary of previous findings and investigate potential factors, which could explain the variable results found in the literature investigating biological motion perception in autism.

Methods

A search from five electronic databases yielded 52 papers eligible for a quantitative summarisation, including behavioural, eye-tracking, electroencephalography and functional magnetic resonance imaging studies.

Results

Using a three-level random effects meta-analytic approach, we found that individuals with autism generally showed decreased performance in perception and interpretation of biological motion. Results additionally suggest decreased performance when higher order information, such as emotion, is required. Moreover, with the increase of age, the difference between autistic and neurotypical individuals decreases, with children showing the largest effect size overall.

Conclusion

We highlight the need for methodological standards and clear distinctions between the age groups and paradigms utilised when trying to interpret differences between the two populations.
Appendix
Available only for authorised users
Literature
2.
go back to reference Pavlova MA. Biological Motion processing as a hallmark of social cognition. Cereb Cortex May. 2012;22:981–95.CrossRef Pavlova MA. Biological Motion processing as a hallmark of social cognition. Cereb Cortex May. 2012;22:981–95.CrossRef
3.
go back to reference Pollick FE, Paterson HM, Bruderlin A, Sanford AJ. Perceiving affect from arm movement. Cognition. 2001;82:B51–61.PubMedCrossRef Pollick FE, Paterson HM, Bruderlin A, Sanford AJ. Perceiving affect from arm movement. Cognition. 2001;82:B51–61.PubMedCrossRef
4.
go back to reference Johansson G. Visual perception of biological motion and a model for its analysis. Percept Psychophys. 1973;14(2):201–11.CrossRef Johansson G. Visual perception of biological motion and a model for its analysis. Percept Psychophys. 1973;14(2):201–11.CrossRef
5.
go back to reference Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459(7244):257–61.PubMedPubMedCentralCrossRef Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459(7244):257–61.PubMedPubMedCentralCrossRef
6.
go back to reference Sparrow WA, Shinkfield AJ, Day RH, Zerman L. Visual perception of human activity and gender in biological-motion displays by individuals with mental retardation. Am J Ment Retard. 1999;104(3):215.PubMedCrossRef Sparrow WA, Shinkfield AJ, Day RH, Zerman L. Visual perception of human activity and gender in biological-motion displays by individuals with mental retardation. Am J Ment Retard. 1999;104(3):215.PubMedCrossRef
7.
go back to reference Simmons DR, Robertson AE, McKay LS, Toal E, McAleer P, Pollick FE. Vision in autism spectrum disorders. Vision Res. 2009;49(22):2705–39.PubMedCrossRef Simmons DR, Robertson AE, McKay LS, Toal E, McAleer P, Pollick FE. Vision in autism spectrum disorders. Vision Res. 2009;49(22):2705–39.PubMedCrossRef
8.
go back to reference American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. p. 947. American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. p. 947.
9.
go back to reference Hubert B, Wicker B, Moore DG, Monfardini E, Duverger H, Da Fonséca D, et al. Brief report: recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. J Autism Dev Disord. 2007;37(7):1386–92.PubMedCrossRef Hubert B, Wicker B, Moore DG, Monfardini E, Duverger H, Da Fonséca D, et al. Brief report: recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. J Autism Dev Disord. 2007;37(7):1386–92.PubMedCrossRef
10.
go back to reference Murphy P, Brady N, Fitzgerald M, Troje NF. No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia. 2009;47(14):3225–35.PubMedCrossRef Murphy P, Brady N, Fitzgerald M, Troje NF. No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia. 2009;47(14):3225–35.PubMedCrossRef
11.
go back to reference Saygin AP, Cook J, Blakemore S-JJ. Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PLoS One. 2010;5(10):1–7.CrossRef Saygin AP, Cook J, Blakemore S-JJ. Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PLoS One. 2010;5(10):1–7.CrossRef
12.
go back to reference Parron C, De Fonseca D, Santos A, Monfardini E, Deruelle C, Da Fonseca D, et al. Recognition of biological motion in children with autistic spectrum disorders. Autism. 2008;12(3):261–74.PubMedCrossRef Parron C, De Fonseca D, Santos A, Monfardini E, Deruelle C, Da Fonseca D, et al. Recognition of biological motion in children with autistic spectrum disorders. Autism. 2008;12(3):261–74.PubMedCrossRef
13.
go back to reference Annaz D, Remington A, Milne E, Coleman M, Campbell R, Thomas MSC, et al. Development of motion processing in children with autism. Dev Sci. 2010;13(6):826–38.PubMedCrossRef Annaz D, Remington A, Milne E, Coleman M, Campbell R, Thomas MSC, et al. Development of motion processing in children with autism. Dev Sci. 2010;13(6):826–38.PubMedCrossRef
14.
go back to reference McKay LS, Simmons DR, McAleer P, Marjoram D, Piggot J, Pollick FE. Do distinct atypical cortical networks process biological motion information in adults with autism spectrum disorders? Neuroimage. 2012;59(2):1524–33.PubMedCrossRef McKay LS, Simmons DR, McAleer P, Marjoram D, Piggot J, Pollick FE. Do distinct atypical cortical networks process biological motion information in adults with autism spectrum disorders? Neuroimage. 2012;59(2):1524–33.PubMedCrossRef
15.
go back to reference Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. PLoS One. 2012;7(9):1–12.CrossRef Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. PLoS One. 2012;7(9):1–12.CrossRef
16.
go back to reference Blake R, Turner LMM, Smoski MJJ, Pozdol SLL, Stone W. L. Visual recognition of biological motion is impaired in children with autism. Psychol Sci. 2003;14(2):151–7.PubMedCrossRef Blake R, Turner LMM, Smoski MJJ, Pozdol SLL, Stone W. L. Visual recognition of biological motion is impaired in children with autism. Psychol Sci. 2003;14(2):151–7.PubMedCrossRef
17.
go back to reference Jones CRG, Swettenham J, Charman T, Marsden AJS, Tregay J, Baird G, et al. No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders. Autism Res. 2011;4(5):347–57.PubMedCrossRef Jones CRG, Swettenham J, Charman T, Marsden AJS, Tregay J, Baird G, et al. No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders. Autism Res. 2011;4(5):347–57.PubMedCrossRef
18.
go back to reference Rutherford MD, Troje NF. IQ predicts biological motion perception in autism spectrum disorders. J Autism Dev Disord. 2012;42(4):557–65.PubMedCrossRef Rutherford MD, Troje NF. IQ predicts biological motion perception in autism spectrum disorders. J Autism Dev Disord. 2012;42(4):557–65.PubMedCrossRef
19.
go back to reference Atkinson AP. Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia. 2009;47(13):3023–9.PubMedCrossRef Atkinson AP. Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia. 2009;47(13):3023–9.PubMedCrossRef
20.
go back to reference Van Boxtel JJA, Dapretto M, Lu H. Intact recognition, but attenuated adaptation, for biological motion in youth with autism spectrum disorder. Autism Res. 2016;9(10):1103–13.PubMedCrossRef Van Boxtel JJA, Dapretto M, Lu H. Intact recognition, but attenuated adaptation, for biological motion in youth with autism spectrum disorder. Autism Res. 2016;9(10):1103–13.PubMedCrossRef
21.
go back to reference Van der Hallen R, Evers K, Brewaeys K, Van den Noortgate W, Wagemans J. Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychol Bull. 2015;141(3):549–73.PubMedCrossRef Van der Hallen R, Evers K, Brewaeys K, Van den Noortgate W, Wagemans J. Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychol Bull. 2015;141(3):549–73.PubMedCrossRef
22.
go back to reference Koldewyn K, Whitney D, Rivera SM. The psychophysics of visual motion and global form processing in autism. Brain. 2010;133(2):599–610.PubMedCrossRef Koldewyn K, Whitney D, Rivera SM. The psychophysics of visual motion and global form processing in autism. Brain. 2010;133(2):599–610.PubMedCrossRef
23.
go back to reference Fridenson-Hayo S, Berggren S, Lassalle A, Tal S, Pigat D, Bölte S, et al. Basic and complex emotion recognition in children with autism: cross-cultural findings. Mol Autism. 2016;7:52.PubMedPubMedCentralCrossRef Fridenson-Hayo S, Berggren S, Lassalle A, Tal S, Pigat D, Bölte S, et al. Basic and complex emotion recognition in children with autism: cross-cultural findings. Mol Autism. 2016;7:52.PubMedPubMedCentralCrossRef
24.
go back to reference Chita-Tegmark M. Social attention in ASD: a review and meta-analysis of eye-tracking studies. Res Dev Disabil. 2016;48:79–93.PubMedCrossRef Chita-Tegmark M. Social attention in ASD: a review and meta-analysis of eye-tracking studies. Res Dev Disabil. 2016;48:79–93.PubMedCrossRef
25.
go back to reference de Gelder B. Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philos Trans R Soc Lond B Biol Sci. 2009;364(1535):3475–84.PubMedPubMedCentralCrossRef de Gelder B. Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philos Trans R Soc Lond B Biol Sci. 2009;364(1535):3475–84.PubMedPubMedCentralCrossRef
26.
go back to reference Annaz D, Campbell R, Coleman M, Milne E, Swettenham J. Young children with autism spectrum disorder do not preferentially attend to biological motion. J Autism Dev Disord. 2012;42(3):401–8.PubMedCrossRef Annaz D, Campbell R, Coleman M, Milne E, Swettenham J. Young children with autism spectrum disorder do not preferentially attend to biological motion. J Autism Dev Disord. 2012;42(3):401–8.PubMedCrossRef
27.
go back to reference Falck-Ytter T, Rehnberg E, Bö Lte S, Bölte S. Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism. PLoS One. 2013;8(7):3–7.CrossRef Falck-Ytter T, Rehnberg E, Bö Lte S, Bölte S. Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism. PLoS One. 2013;8(7):3–7.CrossRef
28.
go back to reference Fujioka T, Inohara K, Okamoto Y, Masuya Y, Ishitobi M, Saito DN, et al. Gazefinder as a clinical supplementary tool for discriminating between autism spectrum disorder and typical development in male adolescents and adults. Mol Autism. 2016;7(1):19.PubMedPubMedCentralCrossRef Fujioka T, Inohara K, Okamoto Y, Masuya Y, Ishitobi M, Saito DN, et al. Gazefinder as a clinical supplementary tool for discriminating between autism spectrum disorder and typical development in male adolescents and adults. Mol Autism. 2016;7(1):19.PubMedPubMedCentralCrossRef
29.
go back to reference Fujisawa TX, Tanaka S, Saito DN, Kosaka H, Tomoda A. Visual attention for social information and salivary oxytocin levels in preschool children with autism spectrum disorders: an eye-tracking study. Front Neurosci. 2014;8:295.PubMedPubMedCentralCrossRef Fujisawa TX, Tanaka S, Saito DN, Kosaka H, Tomoda A. Visual attention for social information and salivary oxytocin levels in preschool children with autism spectrum disorders: an eye-tracking study. Front Neurosci. 2014;8:295.PubMedPubMedCentralCrossRef
30.
go back to reference Alaerts K, Swinnen SP, Wenderoth N. Neural processing of biological motion in autism: an investigation of brain activity and effective connectivity. Sci Rep. 2017;7(1):5612.PubMedPubMedCentralCrossRef Alaerts K, Swinnen SP, Wenderoth N. Neural processing of biological motion in autism: an investigation of brain activity and effective connectivity. Sci Rep. 2017;7(1):5612.PubMedPubMedCentralCrossRef
31.
go back to reference Freitag CM, Konrad C, Häberlen M, Kleser C, Von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia. 2008;46(5):1480–94.PubMedCrossRef Freitag CM, Konrad C, Häberlen M, Kleser C, Von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia. 2008;46(5):1480–94.PubMedCrossRef
32.
go back to reference Grèzes J, Wicker B, Berthoz S, de Gelder B. A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia. 2009;47:1816–25.PubMedCrossRef Grèzes J, Wicker B, Berthoz S, de Gelder B. A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia. 2009;47:1816–25.PubMedCrossRef
33.
go back to reference Kaiser MD, Shiffrar M. The visual perception of motion by observers with autism spectrum disorders: a review and synthesis. Psychon Bull Rev. 2009;16(5):761–77.PubMedCrossRef Kaiser MD, Shiffrar M. The visual perception of motion by observers with autism spectrum disorders: a review and synthesis. Psychon Bull Rev. 2009;16(5):761–77.PubMedCrossRef
34.
go back to reference Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Müller R-A. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25(3):916–25.PubMedCrossRef Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Müller R-A. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25(3):916–25.PubMedCrossRef
35.
go back to reference Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn Brain Res. 2005;24(2):190–8.CrossRef Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn Brain Res. 2005;24(2):190–8.CrossRef
36.
go back to reference Williams JHG, Waiter GD, Gilchrist A, Perrett DI, Murray AD, Whiten A. Neural mechanisms of imitation and “mirror neuron” functioning in autistic spectrum disorder. Neuropsychologia. 2006;44:610–21.PubMedCrossRef Williams JHG, Waiter GD, Gilchrist A, Perrett DI, Murray AD, Whiten A. Neural mechanisms of imitation and “mirror neuron” functioning in autistic spectrum disorder. Neuropsychologia. 2006;44:610–21.PubMedCrossRef
37.
go back to reference Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert RE, et al. Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol Bull. 2016;142(3):291–313.PubMedCrossRef Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert RE, et al. Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol Bull. 2016;142(3):291–313.PubMedCrossRef
38.
go back to reference Raymaekers R, Wiersema JR, Roeyers H. EEG study of the mirror neuron system in children with high functioning autism. Brain Res. 2009;1304:113–21.PubMedCrossRef Raymaekers R, Wiersema JR, Roeyers H. EEG study of the mirror neuron system in children with high functioning autism. Brain Res. 2009;1304:113–21.PubMedCrossRef
39.
go back to reference Kaiser MD, Pelphrey KA. Disrupted action perception in autism: behavioral evidence, neuroendophenotypes, and diagnostic utility. Dev Cogn Neurosci. 2012;2(1):25–35.PubMedCrossRef Kaiser MD, Pelphrey KA. Disrupted action perception in autism: behavioral evidence, neuroendophenotypes, and diagnostic utility. Dev Cogn Neurosci. 2012;2(1):25–35.PubMedCrossRef
40.
go back to reference Van der Hallen R, Manning C, Evers K, Wagemans J. Global motion perception in autism spectrum disorder: a meta-analysis. J Autism Dev Disord. 2019;49:4901–18.PubMedPubMedCentralCrossRef Van der Hallen R, Manning C, Evers K, Wagemans J. Global motion perception in autism spectrum disorder: a meta-analysis. J Autism Dev Disord. 2019;49:4901–18.PubMedPubMedCentralCrossRef
41.
go back to reference Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous perception of biological motion in autism: a conceptual review and meta-analysis. bioRxiv. 2019. Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous perception of biological motion in autism: a conceptual review and meta-analysis. bioRxiv. 2019.
42.
go back to reference Philip RCMM, Dauvermann MR, Whalley HC, Baynham K, Lawrie SM, Stanfield AC. A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neurosci Biobehav Rev. 2012;36(2):901–42.PubMedCrossRef Philip RCMM, Dauvermann MR, Whalley HC, Baynham K, Lawrie SM, Stanfield AC. A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neurosci Biobehav Rev. 2012;36(2):901–42.PubMedCrossRef
43.
go back to reference Hamilton AF. Reflecting on the mirror neuron system in autism: a systematic review of current theories. Dev Cogn Neurosci. 2013;3:91–105.PubMedCrossRef Hamilton AF. Reflecting on the mirror neuron system in autism: a systematic review of current theories. Dev Cogn Neurosci. 2013;3:91–105.PubMedCrossRef
44.
go back to reference Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.PubMedPubMedCentralCrossRef
45.
go back to reference Price KJ, Shiffrar M, Kerns KA. Movement perception and movement production in Asperger’s Syndrome. Res Autism Spectr Disord. 2012;6(1):391–8.CrossRef Price KJ, Shiffrar M, Kerns KA. Movement perception and movement production in Asperger’s Syndrome. Res Autism Spectr Disord. 2012;6(1):391–8.CrossRef
46.
go back to reference Wang L-H, Chien SHL, Hu S-F, Chen T-Y, Chen H-S, Hui S, et al. Children with autism spectrum disorders are less proficient in action identification and lacking a preference for upright point-light biological motion displays. Res Autism Spectr Disord. 2015;11(91):63–76.CrossRef Wang L-H, Chien SHL, Hu S-F, Chen T-Y, Chen H-S, Hui S, et al. Children with autism spectrum disorders are less proficient in action identification and lacking a preference for upright point-light biological motion displays. Res Autism Spectr Disord. 2015;11(91):63–76.CrossRef
47.
48.
go back to reference Philip RCM, Whalley HC, Stanfield AC, Sprengelmeyer R, Santos IM, Young AW, et al. Deficits in facial, body movement and vocal emotional processing in autism spectrum disorders. Psychol Med. 2010;40(11):1919–29.PubMedCrossRef Philip RCM, Whalley HC, Stanfield AC, Sprengelmeyer R, Santos IM, Young AW, et al. Deficits in facial, body movement and vocal emotional processing in autism spectrum disorders. Psychol Med. 2010;40(11):1919–29.PubMedCrossRef
49.
go back to reference Actis-Grosso R, Bossi F, Ricciardelli P. Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits. Front Psychol. 2015;6:1570.PubMedPubMedCentralCrossRef Actis-Grosso R, Bossi F, Ricciardelli P. Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits. Front Psychol. 2015;6:1570.PubMedPubMedCentralCrossRef
50.
go back to reference Alaerts K, Geerlings F, Herremans L, Swinnen SP, Verhoeven J, Sunaert S, et al. Functional organization of the action observation network in autism: a graph theory approach. PLoS One. 2015;10(8):1–21.CrossRef Alaerts K, Geerlings F, Herremans L, Swinnen SP, Verhoeven J, Sunaert S, et al. Functional organization of the action observation network in autism: a graph theory approach. PLoS One. 2015;10(8):1–21.CrossRef
51.
go back to reference Binnersley J. Perception of biological motion in autistic spectrum disorder: University College London; 2006. Binnersley J. Perception of biological motion in autistic spectrum disorder: University College London; 2006.
52.
go back to reference Cook J, Saygin AP, Swain R, Blakemore S-JJ. Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions. Neuropsychologia. 2009;47(14):3275–8.PubMedPubMedCentralCrossRef Cook J, Saygin AP, Swain R, Blakemore S-JJ. Reduced sensitivity to minimum-jerk biological motion in autism spectrum conditions. Neuropsychologia. 2009;47(14):3275–8.PubMedPubMedCentralCrossRef
53.
go back to reference Couture SM, Penn DL, Losh M, Adolphs R, Hurley R, Piven J. Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychol Med. 2010;40(4):569.PubMedCrossRef Couture SM, Penn DL, Losh M, Adolphs R, Hurley R, Piven J. Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychol Med. 2010;40(4):569.PubMedCrossRef
55.
go back to reference Edey R, Cook J, Brewer R, Bird G, Press C. Adults with autism spectrum disorder are sensitive to the kinematic features defining natural human motion. Autism Res. 2019;12(2):284–94.PubMedCrossRef Edey R, Cook J, Brewer R, Bird G, Press C. Adults with autism spectrum disorder are sensitive to the kinematic features defining natural human motion. Autism Res. 2019;12(2):284–94.PubMedCrossRef
56.
go back to reference Karuppali S. Do children with autism spectrum disorders exhibit biological motion perception deficits? Evidence using an action recognition paradigm. J Indian Assoc Child Adolesc Ment Heal. 2018;14(4):38–57. Karuppali S. Do children with autism spectrum disorders exhibit biological motion perception deficits? Evidence using an action recognition paradigm. J Indian Assoc Child Adolesc Ment Heal. 2018;14(4):38–57.
58.
go back to reference Krakowski A. Biological motion processing in typical development and in the autism spectrum. City University of New York: City University of New York (CUNY); 2014. Krakowski A. Biological motion processing in typical development and in the autism spectrum. City University of New York: City University of New York (CUNY); 2014.
59.
go back to reference Kröger A, Bletsch A, Krick C, Siniatchkin M, Jarczok TA, Freitag CM, et al. Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Soc Cogn Affect Neurosci. 2014;9(8):1214–22.PubMedCrossRef Kröger A, Bletsch A, Krick C, Siniatchkin M, Jarczok TA, Freitag CM, et al. Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Soc Cogn Affect Neurosci. 2014;9(8):1214–22.PubMedCrossRef
60.
go back to reference Krüger B, Kaletsch M, Pilgramm S, Schwippert S, Hennig J, Stark R, et al. Perceived intensity of emotional point–light displays is reduced in subjects with ASD. J Autism Dev Disord. 2017;48(1).CrossRef Krüger B, Kaletsch M, Pilgramm S, Schwippert S, Hennig J, Stark R, et al. Perceived intensity of emotional point–light displays is reduced in subjects with ASD. J Autism Dev Disord. 2017;48(1).CrossRef
61.
go back to reference Morrison KE, Pinkham AE, Kelsven S, Ludwig K, Penn DL, Sasson NJ. Psychometric evaluation of social cognitive measures for adults with autism. Autism Res. 2019;12(5):766–78.PubMedPubMedCentralCrossRef Morrison KE, Pinkham AE, Kelsven S, Ludwig K, Penn DL, Sasson NJ. Psychometric evaluation of social cognitive measures for adults with autism. Autism Res. 2019;12(5):766–78.PubMedPubMedCentralCrossRef
62.
go back to reference Sotoodeh MS, Taheri-Torbati H, Sohrabi M, Ghoshuni M. Perception of biological motions is preserved in people with autism spectrum disorder: electrophysiological and behavioural evidences. J Intellect Disabil Res. 2019;63(1):72–84.PubMedCrossRef Sotoodeh MS, Taheri-Torbati H, Sohrabi M, Ghoshuni M. Perception of biological motions is preserved in people with autism spectrum disorder: electrophysiological and behavioural evidences. J Intellect Disabil Res. 2019;63(1):72–84.PubMedCrossRef
63.
go back to reference Swettenham J, Remington A, Laing K, Fletcher R, Coleman M, Gomez J-CC. Perception of pointing from biological motion point-light displays in typically developing children and children with autism spectrum disorder. J Autism Dev Disord. 2013;43(6):1437–46.PubMedCrossRef Swettenham J, Remington A, Laing K, Fletcher R, Coleman M, Gomez J-CC. Perception of pointing from biological motion point-light displays in typically developing children and children with autism spectrum disorder. J Autism Dev Disord. 2013;43(6):1437–46.PubMedCrossRef
64.
go back to reference Turi M, Muratori F, Tinelli F, Morrone MC, Burr DC. Autism is associated with reduced ability to interpret grasping actions of others. Sci Rep. 2017;7:12687.PubMedPubMedCentralCrossRef Turi M, Muratori F, Tinelli F, Morrone MC, Burr DC. Autism is associated with reduced ability to interpret grasping actions of others. Sci Rep. 2017;7:12687.PubMedPubMedCentralCrossRef
65.
go back to reference Von Der Lühe T, Manera V, Barisic I, Becchio C, Vogeley K, Schilbach L. Interpersonal predictive coding, not action perception, is impaired in autism. Philos Trans R Soc. 2016;371:2015373. Von Der Lühe T, Manera V, Barisic I, Becchio C, Vogeley K, Schilbach L. Interpersonal predictive coding, not action perception, is impaired in autism. Philos Trans R Soc. 2016;371:2015373.
66.
go back to reference Burnside K, Wright K, Poulin-Dubois D. Social motivation and implicit theory of mind in children with autism spectrum disorder. Autism Res. 2017;10:1834–44.PubMedPubMedCentralCrossRef Burnside K, Wright K, Poulin-Dubois D. Social motivation and implicit theory of mind in children with autism spectrum disorder. Autism Res. 2017;10:1834–44.PubMedPubMedCentralCrossRef
67.
go back to reference Bernier R, Dawson G, Webb S, Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder; 2007.CrossRef Bernier R, Dawson G, Webb S, Murias M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder; 2007.CrossRef
68.
go back to reference Bernier R, Aaronson B, Mcpartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 2013;82:69–75.PubMedCrossRef Bernier R, Aaronson B, Mcpartland J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 2013;82:69–75.PubMedCrossRef
69.
go back to reference Hirai M, Gunji A, Inoue Y, Kita Y, Hayashi T, Nishimaki K, et al. Differential electrophysiological responses to biological motion in children and adults with and without autism spectrum disorders. Res Autism Spectr Disord. 2014;8(12):1623–34.CrossRef Hirai M, Gunji A, Inoue Y, Kita Y, Hayashi T, Nishimaki K, et al. Differential electrophysiological responses to biological motion in children and adults with and without autism spectrum disorders. Res Autism Spectr Disord. 2014;8(12):1623–34.CrossRef
70.
go back to reference Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014;1585:108–19.PubMedCrossRef Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014;1585:108–19.PubMedCrossRef
71.
go back to reference Alaerts K, Woolley DG, Steyaert J, Di Martino A, Swinnen SP, Wenderoth N. Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Soc Cogn Affect Neurosci. 2013;9(10):1589–600.PubMedPubMedCentralCrossRef Alaerts K, Woolley DG, Steyaert J, Di Martino A, Swinnen SP, Wenderoth N. Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Soc Cogn Affect Neurosci. 2013;9(10):1589–600.PubMedPubMedCentralCrossRef
72.
go back to reference Björnsdotter M, Wang N, Pelphrey K, Kaiser MD. Evaluation of quantified social perception circuit activity as a neurobiological marker of autism spectrum disorder. JAMA psychiatry. 2016;73(6):614–21.PubMedPubMedCentralCrossRef Björnsdotter M, Wang N, Pelphrey K, Kaiser MD. Evaluation of quantified social perception circuit activity as a neurobiological marker of autism spectrum disorder. JAMA psychiatry. 2016;73(6):614–21.PubMedPubMedCentralCrossRef
73.
74.
go back to reference Jack A, Keifer CM, Pelphrey KA. Cerebellar contributions to biological motion perception in autism and typical development. Hum Brain Mapp. 2017;38(4):1914–32.PubMedPubMedCentralCrossRef Jack A, Keifer CM, Pelphrey KA. Cerebellar contributions to biological motion perception in autism and typical development. Hum Brain Mapp. 2017;38(4):1914–32.PubMedPubMedCentralCrossRef
76.
go back to reference Marsh LE, Hamilton AF de C. Dissociation of mirroring and mentalising systems in autism. Neuroimage. 2011;56(3):1511–9.PubMedCrossRef Marsh LE, Hamilton AF de C. Dissociation of mirroring and mentalising systems in autism. Neuroimage. 2011;56(3):1511–9.PubMedCrossRef
77.
go back to reference Yang YJD, Sukhodolsky DG, Lei J, Dayan E, Pelphrey KA, Ventola P. Distinct neural bases of disruptive behavior and autism symptom severity in boys with autism spectrum disorder. J Neurodev Disord. 2017;9(1). Yang YJD, Sukhodolsky DG, Lei J, Dayan E, Pelphrey KA, Ventola P. Distinct neural bases of disruptive behavior and autism symptom severity in boys with autism spectrum disorder. J Neurodev Disord. 2017;9(1).
78.
go back to reference Kmet LM, Lee RC, Cook LS. Standard quality assessment criteria for evaluating primary research papers from a variety of fields: University of Alberta Libraries; 2004. Kmet LM, Lee RC, Cook LS. Standard quality assessment criteria for evaluating primary research papers from a variety of fields: University of Alberta Libraries; 2004.
79.
go back to reference Gough D. Weight of Evidence: a framework for the appraisal of the quality and relevance of evidence. Res Pap Educ. 2007;22(2):213–28.CrossRef Gough D. Weight of Evidence: a framework for the appraisal of the quality and relevance of evidence. Res Pap Educ. 2007;22(2):213–28.CrossRef
80.
go back to reference Del Re AC. compute.es: Compute Effect Sizes. R package. 2013. Del Re AC. compute.es: Compute Effect Sizes. R package. 2013.
81.
go back to reference R Core Team. R: A language and environment for statistical computing. Virnna: R Foundation for Statistical Computing; 2018. R Core Team. R: A language and environment for statistical computing. Virnna: R Foundation for Statistical Computing; 2018.
82.
go back to reference RStudio Team. RStudio: Integrated Development for R. Boston: RStudio INC; 2016. RStudio Team. RStudio: Integrated Development for R. Boston: RStudio INC; 2016.
83.
go back to reference Cheung MW-L. Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol Methods. 2014;19(2):211–29.PubMedCrossRef Cheung MW-L. Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol Methods. 2014;19(2):211–29.PubMedCrossRef
84.
go back to reference Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45(2):576–94.PubMedCrossRef Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45(2):576–94.PubMedCrossRef
85.
go back to reference Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J. Meta-analysis of multiple outcomes: a multilevel approach. Behav Res Methods. 2015;47(4):1274–94.PubMedCrossRef Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J. Meta-analysis of multiple outcomes: a multilevel approach. Behav Res Methods. 2015;47(4):1274–94.PubMedCrossRef
86.
go back to reference SAS OnDemand for Academics: SAS Studio. Cary: SAS Institute Inc; SAS OnDemand for Academics: SAS Studio. Cary: SAS Institute Inc;
87.
go back to reference Schaalje GB, McBride JB, Fellingham GW. Approximations to distributions of test statistics in complex mixed linear models using SAS Proc MIXED. In: SAS Conference Proceedings, vol. 26: SAS Users Group International; 2001. p. 262. Schaalje GB, McBride JB, Fellingham GW. Approximations to distributions of test statistics in complex mixed linear models using SAS Proc MIXED. In: SAS Conference Proceedings, vol. 26: SAS Users Group International; 2001. p. 262.
88.
go back to reference Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRef Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRef
90.
go back to reference Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.PubMedCrossRef Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.PubMedCrossRef
91.
go back to reference Rendina-Gobioff G, Kromery JD. PUB_BIAS: a SAS macro for detecting publication bias in meta-analysis. In: 14th Annual SouthEast SAS Users Group (SESUG) Conference. Atlanta; 2006. Rendina-Gobioff G, Kromery JD. PUB_BIAS: a SAS macro for detecting publication bias in meta-analysis. In: 14th Annual SouthEast SAS Users Group (SESUG) Conference. Atlanta; 2006.
92.
go back to reference Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp. 2012;33(1):1–13.PubMedCrossRef Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp. 2012;33(1):1–13.PubMedCrossRef
93.
go back to reference Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30(9):2907–26.PubMedPubMedCentralCrossRef Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30(9):2907–26.PubMedPubMedCentralCrossRef
94.
go back to reference Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. Neuroimage. 2012;59(3):2349–61.PubMedCrossRef Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation meta-analysis revisited. Neuroimage. 2012;59(3):2349–61.PubMedCrossRef
96.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef
97.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Academic Press; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Academic Press; 1988.
98.
go back to reference Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K, et al. Recognizing Biological motion and emotions from point- light displays in autism spectrum disorders. PLoS One. 2012;7(9).PubMedPubMedCentralCrossRef Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K, et al. Recognizing Biological motion and emotions from point- light displays in autism spectrum disorders. PLoS One. 2012;7(9).PubMedPubMedCentralCrossRef
99.
go back to reference Scheepers C. Between-group matching of confounding variables: why covariates remain important for analysis; 2014. Scheepers C. Between-group matching of confounding variables: why covariates remain important for analysis; 2014.
100.
go back to reference Price KJ, Shiffrar M, Kerns KA. Movement perception and movement production in Asperger’s syndrome previously researchers have documented movement impairments in individuals with Asperger’s Syndrome (AS) and autism (e.g. Res Autism Spectr Disord. 2011;6:391–398. Price KJ, Shiffrar M, Kerns KA. Movement perception and movement production in Asperger’s syndrome previously researchers have documented movement impairments in individuals with Asperger’s Syndrome (AS) and autism (e.g. Res Autism Spectr Disord. 2011;6:391–398.
101.
go back to reference Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis. J Clin Epidemiol. 2001;54(10):1046–55.PubMedCrossRef Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis. J Clin Epidemiol. 2001;54(10):1046–55.PubMedCrossRef
102.
go back to reference Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343(jul22 1):d4002.PubMedCrossRef Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343(jul22 1):d4002.PubMedCrossRef
103.
go back to reference Higgins J, Green J. Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration; 2011. Higgins J, Green J. Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration; 2011.
104.
go back to reference Lancaster JL, Martinez MJ. Mango: Multi-image Analysis GUI. Lancaster JL, Martinez MJ. Mango: Multi-image Analysis GUI.
105.
go back to reference Bal E, Harden E, Lamb D, Van Hecke AV, Denver JW, Porges SW. Emotion recognition in Children with autism spectrum disorders: relations to eye gaze and autonomic state. J Autism Dev Disord. 2010;40(3):358–70.PubMedCrossRef Bal E, Harden E, Lamb D, Van Hecke AV, Denver JW, Porges SW. Emotion recognition in Children with autism spectrum disorders: relations to eye gaze and autonomic state. J Autism Dev Disord. 2010;40(3):358–70.PubMedCrossRef
106.
go back to reference Dyck MJ, Ferguson K, Shochet IM. Do autism spectrum disorders differ from each other and from non-spectrum disorders on emotion recognition tests? Eur Child Adolesc Psychiatry. 2001;10(2):105–16.PubMedCrossRef Dyck MJ, Ferguson K, Shochet IM. Do autism spectrum disorders differ from each other and from non-spectrum disorders on emotion recognition tests? Eur Child Adolesc Psychiatry. 2001;10(2):105–16.PubMedCrossRef
107.
go back to reference Hudepohl MB, Robins DL, King TZ, Henrich CC. The role of emotion perception in adaptive functioning of people with autism spectrum disorders. Autism. 2015;19(1):107–12.PubMedCrossRef Hudepohl MB, Robins DL, King TZ, Henrich CC. The role of emotion perception in adaptive functioning of people with autism spectrum disorders. Autism. 2015;19(1):107–12.PubMedCrossRef
108.
go back to reference Jones CRG, Pickles A, Falcaro M, Marsden AJS, Happé F, Scott SK, et al. A multimodal approach to emotion recognition ability in autism spectrum disorders. J Child Psychol Psychiatry. 2011;52(3):275–85.PubMedCrossRef Jones CRG, Pickles A, Falcaro M, Marsden AJS, Happé F, Scott SK, et al. A multimodal approach to emotion recognition ability in autism spectrum disorders. J Child Psychol Psychiatry. 2011;52(3):275–85.PubMedCrossRef
109.
go back to reference Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR. Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia. 2005;43(7):1044–53.PubMedCrossRef Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR. Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia. 2005;43(7):1044–53.PubMedCrossRef
110.
111.
go back to reference Ghanouni P, Memari AH, Shayestehfar M, Moshayedi P, Gharibzadeh S, Ziaee V. Biological motion perception is affected by age and cognitive style in children aged 8–15. Neurol Res Int. 2015;2015:1–6.CrossRef Ghanouni P, Memari AH, Shayestehfar M, Moshayedi P, Gharibzadeh S, Ziaee V. Biological motion perception is affected by age and cognitive style in children aged 8–15. Neurol Res Int. 2015;2015:1–6.CrossRef
112.
go back to reference Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8(3):300–4.PubMedCrossRef Oberman LM, McCleery JP, Hubbard EM, Bernier R, Wiersema JR, Raymaekers R, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci. 2013;8(3):300–4.PubMedCrossRef
114.
go back to reference Oberman LM, Ramachandran VS, Pineda JA. Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia. 2008 Jan 1;46(5):1558–65.PubMedCrossRef Oberman LM, Ramachandran VS, Pineda JA. Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia. 2008 Jan 1;46(5):1558–65.PubMedCrossRef
115.
go back to reference Downing PE, Peelen MV. The role of occipitotemporal body-selective regions in person perception. Cogn Neurosci. 2011;2(3–4):186–203.PubMedCrossRef Downing PE, Peelen MV. The role of occipitotemporal body-selective regions in person perception. Cogn Neurosci. 2011;2(3–4):186–203.PubMedCrossRef
116.
go back to reference Grosbras M-H, Beaton S, Eickhoff SB. Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis. Hum Brain Mapp. 2012;33(2):431–54.PubMedCrossRef Grosbras M-H, Beaton S, Eickhoff SB. Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis. Hum Brain Mapp. 2012;33(2):431–54.PubMedCrossRef
117.
go back to reference Downing PE. A cortical area selective for visual processing of the human body. Science (80- ). 2001;293(5539):2470–3.CrossRef Downing PE. A cortical area selective for visual processing of the human body. Science (80- ). 2001;293(5539):2470–3.CrossRef
118.
go back to reference Noble K, Glowinski D, Murphy H, Jola C, McAleer P, Darshane N, et al. Event segmentation and biological motion perception in watching dance. Art Percept. 2014;2(1–2):59–74.CrossRef Noble K, Glowinski D, Murphy H, Jola C, McAleer P, Darshane N, et al. Event segmentation and biological motion perception in watching dance. Art Percept. 2014;2(1–2):59–74.CrossRef
119.
go back to reference Peelen MV, Downing PE. The neural basis of visual body perception. Nat Rev Neurosci. 2007;8(8):636–48.PubMedCrossRef Peelen MV, Downing PE. The neural basis of visual body perception. Nat Rev Neurosci. 2007;8(8):636–48.PubMedCrossRef
120.
go back to reference Thompson JC, Baccus W. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage. 2012;59(1):625–34.PubMedCrossRef Thompson JC, Baccus W. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex. Neuroimage. 2012;59(1):625–34.PubMedCrossRef
121.
go back to reference Pelphrey KA, Shultz S, Hudac CM, Vander Wyk BC. Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52(6):631–44.PubMedPubMedCentralCrossRef Pelphrey KA, Shultz S, Hudac CM, Vander Wyk BC. Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52(6):631–44.PubMedPubMedCentralCrossRef
122.
123.
go back to reference Han Z, Bi Y, Chen J, Chen Q, He Y, Caramazza A. Distinct regions of right temporal cortex are associated with biological and human-agent motion: functional magnetic resonance imaging and neuropsychological evidence. J Neurosci. 2013;33(39):15442–53.PubMedPubMedCentralCrossRef Han Z, Bi Y, Chen J, Chen Q, He Y, Caramazza A. Distinct regions of right temporal cortex are associated with biological and human-agent motion: functional magnetic resonance imaging and neuropsychological evidence. J Neurosci. 2013;33(39):15442–53.PubMedPubMedCentralCrossRef
124.
go back to reference Matson JL, Neal D. Diagnosing high incidence autism spectrum disorders in adults. Res Autism Spectr Disord. 2009;3(3):581–9.CrossRef Matson JL, Neal D. Diagnosing high incidence autism spectrum disorders in adults. Res Autism Spectr Disord. 2009;3(3):581–9.CrossRef
125.
go back to reference Valentine JC, Pigott TD, Rothstein HR. How Many Studies Do You Need? J Educ Behav Stat. 2010;35(2):215–47.CrossRef Valentine JC, Pigott TD, Rothstein HR. How Many Studies Do You Need? J Educ Behav Stat. 2010;35(2):215–47.CrossRef
Metadata
Title
Biological motion perception in autism spectrum disorder: a meta-analysis
Authors
Greta Krasimirova Todorova
Rosalind Elizabeth Mcbean Hatton
Frank Earl Pollick
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2019
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-019-0299-8

Other articles of this Issue 1/2019

Molecular Autism 1/2019 Go to the issue