Skip to main content
Top
Published in: Sports Medicine 1/2014

01-01-2014 | Letter to the Editor

Author’s Reply to Steele and Fisher: “Scientific Rigour: a Heavy or Light Load to Carry?”

The Importance of Maintaining Objectivity in Drawing Evidence-Based Conclusions

Author: B. Schoenfeld

Published in: Sports Medicine | Issue 1/2014

Login to get access

Excerpt

I appreciate the opportunity to respond to the letter by Steele and Fisher, “Scientific rigour; a heavy or light load to carry?” [1] regarding my recent review paper [2]. I welcome the platform that this letter provides to further expound on the role of loading in muscular adaptations. …
Literature
3.
go back to reference Schuenke MD, Herman JR, Gliders RM, Hagerman FC, Hikida RS, Rana SR, et al. Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol. 2012;112(10):3585–95.PubMedCrossRef Schuenke MD, Herman JR, Gliders RM, Hagerman FC, Hikida RS, Rana SR, et al. Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol. 2012;112(10):3585–95.PubMedCrossRef
4.
go back to reference Campos GER, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.PubMedCrossRef Campos GER, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):50–60.PubMedCrossRef
5.
go back to reference Bemben MG. Use of diagnostic ultrasound for assessing muscle size. J Strength Cond Res. 2002;16(1):103–8.PubMed Bemben MG. Use of diagnostic ultrasound for assessing muscle size. J Strength Cond Res. 2002;16(1):103–8.PubMed
6.
go back to reference Foley JM, Jayaraman RC, Prior BM, Pivarnik JM, Meyer RA. MR measurements of muscle damage and adaptation after eccentric exercise. J Appl Physiol. 1999;87(6):2311–8.PubMed Foley JM, Jayaraman RC, Prior BM, Pivarnik JM, Meyer RA. MR measurements of muscle damage and adaptation after eccentric exercise. J Appl Physiol. 1999;87(6):2311–8.PubMed
7.
go back to reference Walton JM, Roberts N, Whitehouse GH. Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med. 1997;31(1):59–64.PubMedCrossRef Walton JM, Roberts N, Whitehouse GH. Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med. 1997;31(1):59–64.PubMedCrossRef
8.
go back to reference Adams G, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol. 2012;2(4):2829–2970. Adams G, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol. 2012;2(4):2829–2970.
9.
go back to reference Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.PubMed Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.PubMed
10.
go back to reference Engstrom CM, Loeb GE, Reid JG, Forrest WJ, Avruch L. Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat. 1991;176:139–56.PubMed Engstrom CM, Loeb GE, Reid JG, Forrest WJ, Avruch L. Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat. 1991;176:139–56.PubMed
11.
go back to reference Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, et al. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol. 2008;105(5):1454–61.PubMedCrossRef Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, et al. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol. 2008;105(5):1454–61.PubMedCrossRef
12.
go back to reference Wakahara T, Miyamoto N, Sugisaki N, Murata K, Kanehisa H, Kawakami Y, et al. Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. Eur J Appl Physiol. 2012;112(4):1569–76.PubMedCrossRef Wakahara T, Miyamoto N, Sugisaki N, Murata K, Kanehisa H, Kawakami Y, et al. Association between regional differences in muscle activation in one session of resistance exercise and in muscle hypertrophy after resistance training. Eur J Appl Physiol. 2012;112(4):1569–76.PubMedCrossRef
13.
go back to reference Matta T, Simao R, de Salles BF, Spineti J, Oliveira LF. Strength training’s chronic effects on muscle architecture parameters of different arm sites. J Strength Cond Res. 2011;25(6):1711–7.PubMedCrossRef Matta T, Simao R, de Salles BF, Spineti J, Oliveira LF. Strength training’s chronic effects on muscle architecture parameters of different arm sites. J Strength Cond Res. 2011;25(6):1711–7.PubMedCrossRef
14.
go back to reference Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310–9.PubMedCrossRef Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310–9.PubMedCrossRef
15.
go back to reference Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368–73.PubMedCrossRef Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368–73.PubMedCrossRef
16.
go back to reference Miyamoto N, Wakahara T, Ema R, Kawakami Y. Non-uniform muscle oxygenation despite uniform neuromuscular activity within the vastus lateralis during fatiguing heavy resistance exercise. Clin Physiol Funct Imaging. 2013. Miyamoto N, Wakahara T, Ema R, Kawakami Y. Non-uniform muscle oxygenation despite uniform neuromuscular activity within the vastus lateralis during fatiguing heavy resistance exercise. Clin Physiol Funct Imaging. 2013.
17.
go back to reference Lamon S, Wallace MA, Leger B, Russell AP. Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2009;587(Pt 8):1795–803.PubMedCrossRef Lamon S, Wallace MA, Leger B, Russell AP. Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2009;587(Pt 8):1795–803.PubMedCrossRef
18.
go back to reference Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576(Pt 3):923–33.PubMedCrossRef Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576(Pt 3):923–33.PubMedCrossRef
19.
go back to reference Hisaeda H, Miyagawa K, Kuno S, Fukunaga T, Muraoka I. Influence of two different modes of resistance training in female subjects. Ergonomics. 1996;39(6):842–52.PubMedCrossRef Hisaeda H, Miyagawa K, Kuno S, Fukunaga T, Muraoka I. Influence of two different modes of resistance training in female subjects. Ergonomics. 1996;39(6):842–52.PubMedCrossRef
20.
go back to reference Kraemer WJ, Nindl BC, Ratamess NA, Gotshalk LA, Volek JS, Fleck SJ, et al. Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sports Exerc. 2004;36(4):697–708.PubMedCrossRef Kraemer WJ, Nindl BC, Ratamess NA, Gotshalk LA, Volek JS, Fleck SJ, et al. Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sports Exerc. 2004;36(4):697–708.PubMedCrossRef
21.
go back to reference Popov DV, Tsvirkun DV, Netreba AI, Tarasova OS, Prostova AB, Larina IM, et al. Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Fiziol Cheloveka. 2006;32(5):121–7.PubMed Popov DV, Tsvirkun DV, Netreba AI, Tarasova OS, Prostova AB, Larina IM, et al. Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Fiziol Cheloveka. 2006;32(5):121–7.PubMed
22.
go back to reference Tanimoto M, Sanada K, Yamamoto K, Kawano H, Gando Y, Tabata I, et al. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res. 2008;22(6):1926–38.PubMedCrossRef Tanimoto M, Sanada K, Yamamoto K, Kawano H, Gando Y, Tabata I, et al. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res. 2008;22(6):1926–38.PubMedCrossRef
23.
go back to reference Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–7.PubMedCrossRef Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol. 2006;100(4):1150–7.PubMedCrossRef
24.
go back to reference Mitchell CJ, Churchward-Venne TA, West DD, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):71–7. Mitchell CJ, Churchward-Venne TA, West DD, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):71–7.
25.
go back to reference Ogasawara R, Loenneke JP, Thiebaud RS, Abe T. Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med. 2013;4:114–21.CrossRef Ogasawara R, Loenneke JP, Thiebaud RS, Abe T. Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med. 2013;4:114–21.CrossRef
Metadata
Title
Author’s Reply to Steele and Fisher: “Scientific Rigour: a Heavy or Light Load to Carry?”
The Importance of Maintaining Objectivity in Drawing Evidence-Based Conclusions
Author
B. Schoenfeld
Publication date
01-01-2014
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 1/2014
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-013-0112-3

Other articles of this Issue 1/2014

Sports Medicine 1/2014 Go to the issue