Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Research

Authentication of differential gene expression in oral squamous cell carcinoma using machine learning applications

Authors: Rian Pratama, Jae Joon Hwang, Ji Hye Lee, Giltae Song, Hae Ryoun Park

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Recently, the possibility of tumour classification based on genetic data has been investigated. However, genetic datasets are difficult to handle because of their massive size and complexity of manipulation. In the present study, we examined the diagnostic performance of machine learning applications using imaging-based classifications of oral squamous cell carcinoma (OSCC) gene sets.

Methods

RNA sequencing data from SCC tissues from various sites, including oral, non-oral head and neck, oesophageal, and cervical regions, were downloaded from The Cancer Genome Atlas (TCGA). The feature genes were extracted through a convolutional neural network (CNN) and machine learning, and the performance of each analysis was compared.

Results

The ability of the machine learning analysis to classify OSCC tumours was excellent. However, the tool exhibited poorer performance in discriminating histopathologically dissimilar cancers derived from the same type of tissue than in differentiating cancers of the same histopathologic type with different tissue origins, revealing that the differential gene expression pattern is a more important factor than the histopathologic features for differentiating cancer types.

Conclusion

The CNN-based diagnostic model and the visualisation methods using RNA sequencing data were useful for correctly categorising OSCC. The analysis showed differentially expressed genes in multiwise comparisons of various types of SCCs, such as KCNA10, FOSL2, and PRDM16, and extracted leader genes from pairwise comparisons were FGF20, DLC1, and ZNF705D.
Appendix
Available only for authorised users
Literature
1.
go back to reference Postma EL, Verkooijen HM, van Diest PJ, Willems SM, van den Bosch MA, van Hillegersberg R. Discrepancy between routine and expert pathologists’ assessment of non-palpable breast cancer and its impact on locoregional and systemic treatment. Eur J Pharmacol. 2013;717(1–3):31–5.CrossRef Postma EL, Verkooijen HM, van Diest PJ, Willems SM, van den Bosch MA, van Hillegersberg R. Discrepancy between routine and expert pathologists’ assessment of non-palpable breast cancer and its impact on locoregional and systemic treatment. Eur J Pharmacol. 2013;717(1–3):31–5.CrossRef
2.
go back to reference Chang WC, Chang CF, Li YH, Yang CY, Su RY, Lin CK, Chen YW. A histopathological evaluation and potential prognostic implications of oral squamous cell carcinoma with adverse features. Oral Oncol. 2019;95:65–73.CrossRef Chang WC, Chang CF, Li YH, Yang CY, Su RY, Lin CK, Chen YW. A histopathological evaluation and potential prognostic implications of oral squamous cell carcinoma with adverse features. Oral Oncol. 2019;95:65–73.CrossRef
3.
go back to reference Lindenblatt Rde C, Martinez GL, Silva LE, Faria PS, Camisasca DR, Lourenco Sde Q. Oral squamous cell carcinoma grading systems—analysis of the best survival predictor. J Oral Pathol Med. 2012;41(1):34–9.CrossRef Lindenblatt Rde C, Martinez GL, Silva LE, Faria PS, Camisasca DR, Lourenco Sde Q. Oral squamous cell carcinoma grading systems—analysis of the best survival predictor. J Oral Pathol Med. 2012;41(1):34–9.CrossRef
4.
go back to reference Padma R, Kalaivani A, Sundaresan S, Sathish P. The relationship between histological differentiation and disease recurrence of primary oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2017;21(3):461.CrossRef Padma R, Kalaivani A, Sundaresan S, Sathish P. The relationship between histological differentiation and disease recurrence of primary oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2017;21(3):461.CrossRef
5.
go back to reference Ong HS, Gokavarapu S, Tian Z, Li J, Xu Q, Zhang CP, Cao W. PDGFRA mRNA overexpression is associated with regional metastasis and reduced survival in oral squamous cell carcinoma. J Oral Pathol Med. 2018;47(7):652–9.CrossRef Ong HS, Gokavarapu S, Tian Z, Li J, Xu Q, Zhang CP, Cao W. PDGFRA mRNA overexpression is associated with regional metastasis and reduced survival in oral squamous cell carcinoma. J Oral Pathol Med. 2018;47(7):652–9.CrossRef
6.
go back to reference Foy JP, Saintigny P, Goudot P, Schouman T, Bertolus C. The promising impact of molecular profiling on treatment strategies in oral cancers. J Stomatol Oral Maxillofac Surg. 2017;118(4):242–7.CrossRef Foy JP, Saintigny P, Goudot P, Schouman T, Bertolus C. The promising impact of molecular profiling on treatment strategies in oral cancers. J Stomatol Oral Maxillofac Surg. 2017;118(4):242–7.CrossRef
7.
go back to reference Perrone F, Bossi P, Cortelazzi B, Locati L, Quattrone P, Pierotti MA, Pilotti S, Licitra L. TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J Clin Oncol. 2010;28(5):761–6.CrossRef Perrone F, Bossi P, Cortelazzi B, Locati L, Quattrone P, Pierotti MA, Pilotti S, Licitra L. TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J Clin Oncol. 2010;28(5):761–6.CrossRef
8.
go back to reference Qadir F, Lalli A, Dar HH, Hwang S, Aldehlawi H, Ma H, Dai H, Waseem A, Teh MT. Clinical correlation of opposing molecular signatures in head and neck squamous cell carcinoma. BMC Cancer. 2019;19(1):830.CrossRef Qadir F, Lalli A, Dar HH, Hwang S, Aldehlawi H, Ma H, Dai H, Waseem A, Teh MT. Clinical correlation of opposing molecular signatures in head and neck squamous cell carcinoma. BMC Cancer. 2019;19(1):830.CrossRef
9.
go back to reference Sepiashvili L, Hui A, Ignatchenko V, Shi W, Su S, Xu W, Huang SH, O’Sullivan B, Waldron J, Irish JC, et al. Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy. Mol Cell Proteom. 2012;11(11):1404–15.CrossRef Sepiashvili L, Hui A, Ignatchenko V, Shi W, Su S, Xu W, Huang SH, O’Sullivan B, Waldron J, Irish JC, et al. Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy. Mol Cell Proteom. 2012;11(11):1404–15.CrossRef
10.
go back to reference Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12(2):e1001786.CrossRef Mroz EA, Tward AD, Hammon RJ, Ren Y, Rocco JW. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12(2):e1001786.CrossRef
11.
go back to reference Grewal JK, Tessier-Cloutier B, Jones M, Gakkhar S, Ma Y, Moore R, Mungall AJ, Zhao Y, Taylor MD, Gelmon K, et al. Application of a neural network whole transcriptome-based pan-cancer method for diagnosis of primary and metastatic cancers. JAMA Netw Open. 2019;2(4):e192597.CrossRef Grewal JK, Tessier-Cloutier B, Jones M, Gakkhar S, Ma Y, Moore R, Mungall AJ, Zhao Y, Taylor MD, Gelmon K, et al. Application of a neural network whole transcriptome-based pan-cancer method for diagnosis of primary and metastatic cancers. JAMA Netw Open. 2019;2(4):e192597.CrossRef
12.
go back to reference Li Y, Kang K, Krahn JM, Croutwater N, Lee K, Umbach DM, Li L. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genom. 2017;18(1):508.CrossRef Li Y, Kang K, Krahn JM, Croutwater N, Lee K, Umbach DM, Li L. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. BMC Genom. 2017;18(1):508.CrossRef
13.
go back to reference Wang J, Wang Y, Kong F, Han R, Song W, Chen D, Bu L, Wang S, Yue J, Ma L. Identification of a six-gene prognostic signature for oral squamous cell carcinoma. J Cell Physiol. 2020;235(3):3056–68.CrossRef Wang J, Wang Y, Kong F, Han R, Song W, Chen D, Bu L, Wang S, Yue J, Ma L. Identification of a six-gene prognostic signature for oral squamous cell carcinoma. J Cell Physiol. 2020;235(3):3056–68.CrossRef
14.
go back to reference Zhao X, Sun S, Zeng X, Cui L. Expression profiles analysis identifies a novel three-mRNA signature to predict overall survival in oral squamous cell carcinoma. Am J Cancer Res. 2018;8(3):450–61.PubMedPubMedCentral Zhao X, Sun S, Zeng X, Cui L. Expression profiles analysis identifies a novel three-mRNA signature to predict overall survival in oral squamous cell carcinoma. Am J Cancer Res. 2018;8(3):450–61.PubMedPubMedCentral
15.
go back to reference Huang GZ, Wu QQ, Zheng ZN, Shao TR, Lv XZ. Identification of candidate biomarkers and analysis of prognostic values in oral squamous cell carcinoma. Front Oncol. 2019;9:1054.CrossRef Huang GZ, Wu QQ, Zheng ZN, Shao TR, Lv XZ. Identification of candidate biomarkers and analysis of prognostic values in oral squamous cell carcinoma. Front Oncol. 2019;9:1054.CrossRef
16.
go back to reference Lee DJ, Eun YG, Rho YS, Kim EH, Yim SY, Kang SH, Sohn BH, Kwon GH, Lee JS. Three distinct genomic subtypes of head and neck squamous cell carcinoma associated with clinical outcomes. Oral Oncol. 2018;85:44–51.CrossRef Lee DJ, Eun YG, Rho YS, Kim EH, Yim SY, Kang SH, Sohn BH, Kwon GH, Lee JS. Three distinct genomic subtypes of head and neck squamous cell carcinoma associated with clinical outcomes. Oral Oncol. 2018;85:44–51.CrossRef
17.
go back to reference Mostavi M, Chiu YC, Huang Y, Chen Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med Genom. 2020;13(Suppl 5):44.CrossRef Mostavi M, Chiu YC, Huang Y, Chen Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med Genom. 2020;13(Suppl 5):44.CrossRef
18.
go back to reference Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.CrossRef Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.CrossRef
19.
go back to reference Lyu B, Haque A. Deep learning based tumor type classification using gene expression data. bioRxiv 2018:364323. Lyu B, Haque A. Deep learning based tumor type classification using gene expression data. bioRxiv 2018:364323.
20.
go back to reference Munir K, Elahi H, Ayub A, Frezza F, Rizzi A. Cancer diagnosis using deep learning: a bibliographic review. Cancers (Basel). 2019;11(9):1235.CrossRef Munir K, Elahi H, Ayub A, Frezza F, Rizzi A. Cancer diagnosis using deep learning: a bibliographic review. Cancers (Basel). 2019;11(9):1235.CrossRef
21.
go back to reference Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight-Uncertainty-in-neural-networks. In Proceedings of the 32nd international conference on machine learning 2015, 37. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight-Uncertainty-in-neural-networks. In Proceedings of the 32nd international conference on machine learning 2015, 37.
22.
go back to reference Sainath TN, Kingsbury B, Saon G, Soltau H, Mohamed AR, Dahl G, Ramabhadran B. Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 2015;64:39–48.CrossRef Sainath TN, Kingsbury B, Saon G, Soltau H, Mohamed AR, Dahl G, Ramabhadran B. Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 2015;64:39–48.CrossRef
23.
go back to reference Zhang D-L, Qu L-W, Ma L, Zhou Y-C, Wang G-Z, Zhao X-C, Zhang C, Zhang Y-F, Wang M, Zhang M-Y, et al. Genome-wide identification of transcription factors that are critical to non-small cell lung cancer. Cancer Lett. 2018;434:132–43.CrossRef Zhang D-L, Qu L-W, Ma L, Zhou Y-C, Wang G-Z, Zhao X-C, Zhang C, Zhang Y-F, Wang M, Zhang M-Y, et al. Genome-wide identification of transcription factors that are critical to non-small cell lung cancer. Cancer Lett. 2018;434:132–43.CrossRef
24.
go back to reference Wu H-T, Xie C-R, Lv J, Qi H-Q, Wang F, Zhang S, Fang Q-L, Wang F-Q, Lu Y-Y, Yin Z-Y. The tumor suppressor DLC1 inhibits cancer progression and oncogenic autophagy in hepatocellular carcinoma. Lab Invest. 2018;98(8):1014–24.CrossRef Wu H-T, Xie C-R, Lv J, Qi H-Q, Wang F, Zhang S, Fang Q-L, Wang F-Q, Lu Y-Y, Yin Z-Y. The tumor suppressor DLC1 inhibits cancer progression and oncogenic autophagy in hepatocellular carcinoma. Lab Invest. 2018;98(8):1014–24.CrossRef
25.
go back to reference Popescu NC, Goodison S. Deleted in liver cancer-1 (DLC1): an emerging metastasis suppressor gene. Mol Diagn Ther. 2014;18(3):293–302.CrossRef Popescu NC, Goodison S. Deleted in liver cancer-1 (DLC1): an emerging metastasis suppressor gene. Mol Diagn Ther. 2014;18(3):293–302.CrossRef
26.
go back to reference Fei L-R, Huang W-J, Wang Y, Lei L, Li Z-H, Zheng Y-W, Wang Z, Yang M-Q, Liu C-C, Xu H-T. PRDM16 functions as a suppressor of lung adenocarcinoma metastasis. J Exp Clin Cancer Res. 2019;38(1):35.CrossRef Fei L-R, Huang W-J, Wang Y, Lei L, Li Z-H, Zheng Y-W, Wang Z, Yang M-Q, Liu C-C, Xu H-T. PRDM16 functions as a suppressor of lung adenocarcinoma metastasis. J Exp Clin Cancer Res. 2019;38(1):35.CrossRef
Metadata
Title
Authentication of differential gene expression in oral squamous cell carcinoma using machine learning applications
Authors
Rian Pratama
Jae Joon Hwang
Ji Hye Lee
Giltae Song
Hae Ryoun Park
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01642-9

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue