Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2023

Open Access 01-12-2023 | Atrial Fibrillation | Research

SGLT2 inhibition, circulating metabolites, and atrial fibrillation: a Mendelian randomization study

Authors: Jiang Li, Yuefeng Yu, Ying Sun, Bowei Yu, Xiao Tan, Bin Wang, Yingli Lu, Ningjian Wang

Published in: Cardiovascular Diabetology | Issue 1/2023

Login to get access

Abstract

Background

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have shown promise in reducing the risk of atrial fibrillation (AF). However, the results are controversial and the underlying metabolic mechanism remains unclear. Emerging evidence implied that SGLT2 inhibitors have extra beneficial metabolic effects on circulating metabolites beyond glucose control, which might play a role in reducing the risk of AF. Hence, our study aimed to investigate the effect of circulating metabolites mediating SGLT2 inhibition in AF by Mendelian randomization (MR).

Methods

A two-sample and two-step MR study was conducted to evaluate the association of SGLT2 inhibition with AF and the mediation effects of circulating metabolites linking SGLT2 inhibition with AF. Genetic instruments for SGLT2 inhibition were identified as genetic variants, which were both associated with the expression of SLC5A2 gene and glycated hemoglobin level (HbA1c). Positive control analysis on type 2 diabetes mellitus (T2DM) was conducted to validate the selection of genetic instruments.

Results

Genetically predicted SGLT2 inhibition (per 1 SD decrement in HbA1c) was associated with reduced risk of T2DM (odds ratio [OR] = 0.63 [95% CI 0.45, 0.88], P = 0.006) and AF (0.51 [0.27, 0.97], P = 0.039). Among 168 circulating metabolites, two metabolites were both associated with SGLT2 inhibition and AF. The effect of SGLT2 inhibition on AF through the total concentration of lipoprotein particles (0.88 [0.81, 0.96], P = 0.004) and the concentration of HDL particles (0.89 [0.82, 0.97], P = 0.005), with a mediated proportion of 8.03% (95% CI [1.20%, 14.34%], P = 0.010) and 7.59% ([1.09%, 13.34%], P = 0.011) of the total effect, respectively.

Conclusions

This study supported the association of SGLT2 inhibition with a reduced risk of AF. The total concentration of lipoprotein particles and particularly the concentration of HDL particles might mediate this association. Further mechanistic and clinical studies research are needed to understand the mediation effects of circulating metabolites especially blood lipids in the association between SGLT2 inhibition and AF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of Diabetes Mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.PubMed Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of Diabetes Mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.PubMed
2.
go back to reference Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with Diabetes and chronic Kidney Disease. N Engl J Med. 2021;384(2):129–39.PubMed Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with Diabetes and chronic Kidney Disease. N Engl J Med. 2021;384(2):129–39.PubMed
3.
go back to reference Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425–35.PubMed Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425–35.PubMed
4.
go back to reference Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and renal events in type 2 Diabetes. N Engl J Med. 2017;377(7):644–57.PubMed Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and renal events in type 2 Diabetes. N Engl J Med. 2017;377(7):644–57.PubMed
5.
go back to reference Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 Diabetes. N Engl J Med. 2019;380(4):347–57.PubMed Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 Diabetes. N Engl J Med. 2019;380(4):347–57.PubMed
6.
go back to reference Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, et al. Effect of Dapagliflozin on Atrial Fibrillation in patients with type 2 Diabetes Mellitus: insights from the DECLARE-TIMI 58 Trial. Circulation. 2020;141(15):1227–34.PubMed Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, et al. Effect of Dapagliflozin on Atrial Fibrillation in patients with type 2 Diabetes Mellitus: insights from the DECLARE-TIMI 58 Trial. Circulation. 2020;141(15):1227–34.PubMed
7.
go back to reference Zhou Z, Jardine MJ, Li Q, Neuen BL, Cannon CP, de Zeeuw D, et al. Effect of SGLT2 inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease: results from the CREDENCE Trial and Meta-Analysis. Stroke. 2021;52(5):1545–56.PubMedPubMedCentral Zhou Z, Jardine MJ, Li Q, Neuen BL, Cannon CP, de Zeeuw D, et al. Effect of SGLT2 inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease: results from the CREDENCE Trial and Meta-Analysis. Stroke. 2021;52(5):1545–56.PubMedPubMedCentral
8.
go back to reference Ouyang X, Wang J, Chen Q, Peng L, Li S, Tang X. Sodium-glucose cotransporter 2 inhibitor may not prevent atrial fibrillation in patients with Heart Failure: a systematic review. Cardiovasc Diabetol. 2023;22(1):124.PubMedPubMedCentral Ouyang X, Wang J, Chen Q, Peng L, Li S, Tang X. Sodium-glucose cotransporter 2 inhibitor may not prevent atrial fibrillation in patients with Heart Failure: a systematic review. Cardiovasc Diabetol. 2023;22(1):124.PubMedPubMedCentral
9.
go back to reference Li HL, Lip GYH, Feng Q, Fei Y, Tse YK, Wu MZ, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20(1):100.PubMedPubMedCentral Li HL, Lip GYH, Feng Q, Fei Y, Tse YK, Wu MZ, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20(1):100.PubMedPubMedCentral
10.
go back to reference Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–72.PubMed Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–72.PubMed
11.
go back to reference Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a thrifty substrate hypothesis. Diabetes Care. 2016;39(7):1108–14.PubMed Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a thrifty substrate hypothesis. Diabetes Care. 2016;39(7):1108–14.PubMed
12.
go back to reference Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of Empagliflozin on the metabolic signature of patients with type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation. 2017;136(10):969–72.PubMed Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of Empagliflozin on the metabolic signature of patients with type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation. 2017;136(10):969–72.PubMed
13.
go back to reference Katano S, Yano T, Kouzu H, Nagaoka R, Numazawa R, Yamano K, et al. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in Heart Failure patients with type 2 Diabetes receiving sodium-glucose cotransporter 2 inhibitors. Cardiovasc Diabetol. 2022;21(1):285.PubMedPubMedCentral Katano S, Yano T, Kouzu H, Nagaoka R, Numazawa R, Yamano K, et al. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in Heart Failure patients with type 2 Diabetes receiving sodium-glucose cotransporter 2 inhibitors. Cardiovasc Diabetol. 2022;21(1):285.PubMedPubMedCentral
14.
go back to reference Szekeres Z, Toth K, Szabados E. The effects of SGLT2 inhibitors on lipid metabolism. Metabolites. 2021;11(2). Szekeres Z, Toth K, Szabados E. The effects of SGLT2 inhibitors on lipid metabolism. Metabolites. 2021;11(2).
15.
go back to reference Sánchez-García A, Simental-Mendía M, Millán-Alanís JM, Simental-Mendía LE. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: a systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res. 2020;160:105068.PubMed Sánchez-García A, Simental-Mendía M, Millán-Alanís JM, Simental-Mendía LE. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: a systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res. 2020;160:105068.PubMed
16.
go back to reference Calapkulu M, Cander S, Gul OO, Ersoy C. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center. Diabetes Metab Syndr. 2019;13(2):1031–4.PubMed Calapkulu M, Cander S, Gul OO, Ersoy C. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center. Diabetes Metab Syndr. 2019;13(2):1031–4.PubMed
17.
go back to reference Fadini GP, Bonora BM, Zatti G, Vitturi N, Iori E, Marescotti MC, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 Diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16(1):42.PubMedPubMedCentral Fadini GP, Bonora BM, Zatti G, Vitturi N, Iori E, Marescotti MC, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 Diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16(1):42.PubMedPubMedCentral
18.
go back to reference Katsuyama H, Hamasaki H, Adachi H, Moriyama S, Kawaguchi A, Sako A, et al. Effects of Sodium-glucose cotransporter 2 inhibitors on metabolic parameters in patients with type 2 Diabetes: a chart-based analysis. J Clin Med Res. 2016;8(3):237–43.PubMedPubMedCentral Katsuyama H, Hamasaki H, Adachi H, Moriyama S, Kawaguchi A, Sako A, et al. Effects of Sodium-glucose cotransporter 2 inhibitors on metabolic parameters in patients with type 2 Diabetes: a chart-based analysis. J Clin Med Res. 2016;8(3):237–43.PubMedPubMedCentral
19.
go back to reference Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6.PubMed Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6.PubMed
20.
go back to reference Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Oxford University Press; 2015. pp. 379–88. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Oxford University Press; 2015. pp. 379–88.
21.
go back to reference Li Y, Gray A, Xue L, Farb MG, Ayalon N, Andersson C, et al. Metabolomic Profiles, Ideal Cardiovascular Health, and risk of Heart Failure and Atrial Fibrillation: insights from the Framingham Heart Study. J Am Heart Assoc. 2023;12(12):e028022.PubMedPubMedCentral Li Y, Gray A, Xue L, Farb MG, Ayalon N, Andersson C, et al. Metabolomic Profiles, Ideal Cardiovascular Health, and risk of Heart Failure and Atrial Fibrillation: insights from the Framingham Heart Study. J Am Heart Assoc. 2023;12(12):e028022.PubMedPubMedCentral
22.
go back to reference Qin X, Zhang Y, Zheng Q. Metabolic inflexibility as a pathogenic basis for Atrial Fibrillation. Int J Mol Sci. 2022;23(15). Qin X, Zhang Y, Zheng Q. Metabolic inflexibility as a pathogenic basis for Atrial Fibrillation. Int J Mol Sci. 2022;23(15).
23.
go back to reference Lu C, Liu C, Mei D, Yu M, Bai J, Bao X, et al. Comprehensive metabolomic characterization of atrial fibrillation. Front Cardiovasc Med. 2022;9:911845.PubMedPubMedCentral Lu C, Liu C, Mei D, Yu M, Bai J, Bao X, et al. Comprehensive metabolomic characterization of atrial fibrillation. Front Cardiovasc Med. 2022;9:911845.PubMedPubMedCentral
24.
go back to reference Guan B, Li X, Xue W, Tse G, Waleed KB, Liu Y, et al. Blood lipid profiles and risk of atrial fibrillation: a systematic review and meta-analysis of cohort studies. J Clin Lipidol. 2020;14(1):133–42e3.PubMed Guan B, Li X, Xue W, Tse G, Waleed KB, Liu Y, et al. Blood lipid profiles and risk of atrial fibrillation: a systematic review and meta-analysis of cohort studies. J Clin Lipidol. 2020;14(1):133–42e3.PubMed
25.
go back to reference Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of Observational studies in Epidemiology using mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614–21.PubMed Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of Observational studies in Epidemiology using mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614–21.PubMed
26.
go back to reference The GTEx. Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30. The GTEx. Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.
27.
go back to reference Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–10.PubMedPubMedCentral Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–10.PubMedPubMedCentral
28.
go back to reference Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, et al. Combining evidence from mendelian randomization and colocalization: review and comparison of approaches. Am J Hum Genet. 2022;109(5):767–82.PubMedPubMedCentral Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, et al. Combining evidence from mendelian randomization and colocalization: review and comparison of approaches. Am J Hum Genet. 2022;109(5):767–82.PubMedPubMedCentral
29.
go back to reference Bakker MK, van Straten T, Chong M, Paré G, Gill D, Ruigrok YM. Anti-epileptic drug target perturbation and intracranial Aneurysm risk: mendelian randomization and colocalization study. Stroke. 2023;54(1):208–16.PubMed Bakker MK, van Straten T, Chong M, Paré G, Gill D, Ruigrok YM. Anti-epileptic drug target perturbation and intracranial Aneurysm risk: mendelian randomization and colocalization study. Stroke. 2023;54(1):208–16.PubMed
30.
go back to reference Ritchie SC, Surendran P, Karthikeyan S, Lambert SA, Bolton T, Pennells L, et al. Quality control and removal of technical variation of NMR metabolic biomarker data in ~ 120,000 UK Biobank participants. Sci Data. 2023;10(1):64.PubMedPubMedCentral Ritchie SC, Surendran P, Karthikeyan S, Lambert SA, Bolton T, Pennells L, et al. Quality control and removal of technical variation of NMR metabolic biomarker data in ~ 120,000 UK Biobank participants. Sci Data. 2023;10(1):64.PubMedPubMedCentral
31.
go back to reference Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv. 2020. 2020.08.10.244293. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv. 2020. 2020.08.10.244293.
32.
go back to reference Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J, et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017;49(6):946–52.PubMedPubMedCentral Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J, et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017;49(6):946–52.PubMedPubMedCentral
33.
go back to reference Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 Diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–72.PubMedPubMedCentral Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 Diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–72.PubMedPubMedCentral
34.
go back to reference Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and Diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentral Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and Diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentral
35.
go back to reference Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. Improving the visualization, interpretation and analysis of two-sample summary data mendelian randomization via the Radial plot and radial regression. Int J Epidemiol. 2018;47(4):1264–78.PubMedPubMedCentral Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. Improving the visualization, interpretation and analysis of two-sample summary data mendelian randomization via the Radial plot and radial regression. Int J Epidemiol. 2018;47(4):1264–78.PubMedPubMedCentral
36.
go back to reference Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in mendelian randomization using a mixture of regressions model. PLoS Genet. 2021;17(11):e1009922.PubMedPubMedCentral Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in mendelian randomization using a mixture of regressions model. PLoS Genet. 2021;17(11):e1009922.PubMedPubMedCentral
37.
go back to reference Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing mendelian randomization investigations. Wellcome Open Res. 2019;4:186.PubMed Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing mendelian randomization investigations. Wellcome Open Res. 2019;4:186.PubMed
38.
go back to reference MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V. A comparison of methods to test mediation and other intervening variable effects. Psychol Methods. 2002;7(1):83–104.PubMedPubMedCentral MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V. A comparison of methods to test mediation and other intervening variable effects. Psychol Methods. 2002;7(1):83–104.PubMedPubMedCentral
39.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentral Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentral
40.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentral Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentral
41.
go back to reference Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent developments in mendelian randomization studies. Curr Epidemiol Rep. 2017;4(4):330–45.PubMedPubMedCentral Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent developments in mendelian randomization studies. Curr Epidemiol Rep. 2017;4(4):330–45.PubMedPubMedCentral
42.
go back to reference Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentral Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentral
43.
go back to reference Zhou Z, Lindley RI, Rådholm K, Jenkins B, Watson J, Perkovic V, et al. Canagliflozin and Stroke in type 2 Diabetes Mellitus. Stroke. 2019;50(2):396–404.PubMed Zhou Z, Lindley RI, Rådholm K, Jenkins B, Watson J, Perkovic V, et al. Canagliflozin and Stroke in type 2 Diabetes Mellitus. Stroke. 2019;50(2):396–404.PubMed
44.
go back to reference Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub M, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):495–502.PubMed Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub M, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):495–502.PubMed
45.
go back to reference Fatima K, Suri A, Rija A, Kalim S, Javaid S, Arif Z et al. The effect of sodium-glucose co-transporter 2 inhibitors on Stroke and atrial fibrillation: a systematic review and meta-analysis. Curr Probl Cardiol. 2022:101582. Fatima K, Suri A, Rija A, Kalim S, Javaid S, Arif Z et al. The effect of sodium-glucose co-transporter 2 inhibitors on Stroke and atrial fibrillation: a systematic review and meta-analysis. Curr Probl Cardiol. 2022:101582.
46.
go back to reference Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH. SGLT2 inhibitors and atrial fibrillation in type 2 Diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol. 2020;19(1):130.PubMedPubMedCentral Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH. SGLT2 inhibitors and atrial fibrillation in type 2 Diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol. 2020;19(1):130.PubMedPubMedCentral
47.
go back to reference Li D, Liu Y, Hidru TH, Yang X, Wang Y, Chen C, et al. Protective effects of Sodium-glucose transporter 2 inhibitors on Atrial Fibrillation and Atrial Flutter: a systematic review and Meta- analysis of Randomized Placebo-controlled trials. Front Endocrinol (Lausanne). 2021;12:619586.PubMed Li D, Liu Y, Hidru TH, Yang X, Wang Y, Chen C, et al. Protective effects of Sodium-glucose transporter 2 inhibitors on Atrial Fibrillation and Atrial Flutter: a systematic review and Meta- analysis of Randomized Placebo-controlled trials. Front Endocrinol (Lausanne). 2021;12:619586.PubMed
48.
go back to reference Sfairopoulos D, Liu T, Zhang N, Tse G, Bazoukis G, Letsas K, et al. Association between sodium-glucose cotransporter-2 inhibitors and incident atrial fibrillation/atrial flutter in Heart Failure patients with reduced ejection fraction: a meta-analysis of randomized controlled trials. Heart Fail Rev. 2023;28(4):925–36.PubMed Sfairopoulos D, Liu T, Zhang N, Tse G, Bazoukis G, Letsas K, et al. Association between sodium-glucose cotransporter-2 inhibitors and incident atrial fibrillation/atrial flutter in Heart Failure patients with reduced ejection fraction: a meta-analysis of randomized controlled trials. Heart Fail Rev. 2023;28(4):925–36.PubMed
49.
go back to reference Li W, Chen X, Xie X, Xu M, Xu L, Liu P, et al. Comparison of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide receptor agonists for Atrial Fibrillation in type 2 Diabetes Mellitus: systematic review with Network Meta-analysis of Randomized controlled trials. J Cardiovasc Pharmacol. 2022;79(3):281–8.PubMed Li W, Chen X, Xie X, Xu M, Xu L, Liu P, et al. Comparison of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide receptor agonists for Atrial Fibrillation in type 2 Diabetes Mellitus: systematic review with Network Meta-analysis of Randomized controlled trials. J Cardiovasc Pharmacol. 2022;79(3):281–8.PubMed
50.
go back to reference Zhuo M, D’Andrea E, Paik JM, Wexler DJ, Everett BM, Glynn RJ, et al. Association of Sodium-glucose Cotransporter-2 inhibitors with Incident Atrial Fibrillation in older adults with type 2 Diabetes. JAMA Netw Open. 2022;5(10):e2235995.PubMedPubMedCentral Zhuo M, D’Andrea E, Paik JM, Wexler DJ, Everett BM, Glynn RJ, et al. Association of Sodium-glucose Cotransporter-2 inhibitors with Incident Atrial Fibrillation in older adults with type 2 Diabetes. JAMA Netw Open. 2022;5(10):e2235995.PubMedPubMedCentral
51.
go back to reference Hsiao FC, Yen KC, Chao TF, Chen SW, Chan YH, Chu PH. New-Onset Atrial Fibrillation in patients with type 2 Diabetes treated with novel glucose-lowering therapies. J Clin Endocrinol Metab. 2022;107(9):2493–9.PubMed Hsiao FC, Yen KC, Chao TF, Chen SW, Chan YH, Chu PH. New-Onset Atrial Fibrillation in patients with type 2 Diabetes treated with novel glucose-lowering therapies. J Clin Endocrinol Metab. 2022;107(9):2493–9.PubMed
52.
go back to reference Karamichalakis N, Kolovos V, Paraskevaidis I, Tsougos E. A New Hope: sodium-glucose Cotransporter-2 inhibition to prevent Atrial Fibrillation. J Cardiovasc Dev Dis. 2022;9(8). Karamichalakis N, Kolovos V, Paraskevaidis I, Tsougos E. A New Hope: sodium-glucose Cotransporter-2 inhibition to prevent Atrial Fibrillation. J Cardiovasc Dev Dis. 2022;9(8).
53.
go back to reference Shetty SS, Krumerman A. Putative protective effects of sodium-glucose cotransporter 2 inhibitors on atrial fibrillation through risk factor modulation and off-target actions: potential mechanisms and future directions. Cardiovasc Diabetol. 2022;21(1):119.PubMedPubMedCentral Shetty SS, Krumerman A. Putative protective effects of sodium-glucose cotransporter 2 inhibitors on atrial fibrillation through risk factor modulation and off-target actions: potential mechanisms and future directions. Cardiovasc Diabetol. 2022;21(1):119.PubMedPubMedCentral
54.
go back to reference Peng X, Li L, Zhang M, Zhao Q, Wu K, Bai R, et al. Sodium-glucose cotransporter 2 inhibitors potentially prevent Atrial Fibrillation by ameliorating Ion Handling and mitochondrial dysfunction. Front Physiol. 2020;11:912.PubMedPubMedCentral Peng X, Li L, Zhang M, Zhao Q, Wu K, Bai R, et al. Sodium-glucose cotransporter 2 inhibitors potentially prevent Atrial Fibrillation by ameliorating Ion Handling and mitochondrial dysfunction. Front Physiol. 2020;11:912.PubMedPubMedCentral
55.
go back to reference Piccirillo F, Mastroberardino S, Nusca A, Frau L, Guarino L, Napoli N et al. Novel antidiabetic agents and their effects on lipid Profile: a single shot for several Cardiovascular targets. Int J Mol Sci. 2023;24(12). Piccirillo F, Mastroberardino S, Nusca A, Frau L, Guarino L, Napoli N et al. Novel antidiabetic agents and their effects on lipid Profile: a single shot for several Cardiovascular targets. Int J Mol Sci. 2023;24(12).
56.
go back to reference Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic view on the effects of SGLT2 inhibitors on lipid metabolism in Diabetic Milieu. J Clin Med. 2022;11:21. Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic view on the effects of SGLT2 inhibitors on lipid metabolism in Diabetic Milieu. J Clin Med. 2022;11:21.
57.
go back to reference Ejiri K, Miyoshi T, Kihara H, Hata Y, Nagano T, Takaishi A, et al. Effects of luseogliflozin and voglibose on high-risk lipid profiles and inflammatory markers in Diabetes patients with Heart Failure. Sci Rep. 2022;12(1):15449.PubMedPubMedCentral Ejiri K, Miyoshi T, Kihara H, Hata Y, Nagano T, Takaishi A, et al. Effects of luseogliflozin and voglibose on high-risk lipid profiles and inflammatory markers in Diabetes patients with Heart Failure. Sci Rep. 2022;12(1):15449.PubMedPubMedCentral
58.
go back to reference Bosch A, Ott C, Jung S, Striepe K, Karg MV, Kannenkeril D, et al. How does empagliflozin improve arterial stiffness in patients with type 2 Diabetes Mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44.PubMedPubMedCentral Bosch A, Ott C, Jung S, Striepe K, Karg MV, Kannenkeril D, et al. How does empagliflozin improve arterial stiffness in patients with type 2 Diabetes Mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44.PubMedPubMedCentral
59.
go back to reference Osto E, Bonacina F, Pirillo A, Norata GD. Neutral effect of SGLT2 inhibitors on lipoprotein metabolism: from clinical evidence to molecular mechanisms. Pharmacol Res. 2023;188:106667.PubMed Osto E, Bonacina F, Pirillo A, Norata GD. Neutral effect of SGLT2 inhibitors on lipoprotein metabolism: from clinical evidence to molecular mechanisms. Pharmacol Res. 2023;188:106667.PubMed
60.
go back to reference Hayashi T, Fukui T, Nakanishi N, Yamamoto S, Tomoyasu M, Osamura A, et al. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 Diabetes: comparison with sitagliptin. Cardiovasc Diabetol. 2017;16(1):8.PubMedPubMedCentral Hayashi T, Fukui T, Nakanishi N, Yamamoto S, Tomoyasu M, Osamura A, et al. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 Diabetes: comparison with sitagliptin. Cardiovasc Diabetol. 2017;16(1):8.PubMedPubMedCentral
61.
go back to reference Rau M, Thiele K, Korbinian Hartmann NU, Möllmann J, Wied S, Böhm M, et al. Effects of empagliflozin on lipoprotein subfractions in patients with type 2 Diabetes: data from a randomized, placebo-controlled study. Atherosclerosis. 2021;330:8–13.PubMed Rau M, Thiele K, Korbinian Hartmann NU, Möllmann J, Wied S, Böhm M, et al. Effects of empagliflozin on lipoprotein subfractions in patients with type 2 Diabetes: data from a randomized, placebo-controlled study. Atherosclerosis. 2021;330:8–13.PubMed
62.
go back to reference Harrison SL, Lane DA, Banach M, Mastej M, Kasperczyk S, Jóźwiak JJ, et al. Lipid levels, atrial fibrillation and the impact of age: results from the LIPIDOGRAM2015 study. Atherosclerosis. 2020;312:16–22.PubMed Harrison SL, Lane DA, Banach M, Mastej M, Kasperczyk S, Jóźwiak JJ, et al. Lipid levels, atrial fibrillation and the impact of age: results from the LIPIDOGRAM2015 study. Atherosclerosis. 2020;312:16–22.PubMed
63.
go back to reference Ding M, Wennberg A, Gigante B, Walldius G, Hammar N, Modig K. Lipid levels in midlife and risk of atrial fibrillation over 3 decades-experience from the Swedish AMORIS cohort: a cohort study. PLoS Med. 2022;19(8):e1004044.PubMedPubMedCentral Ding M, Wennberg A, Gigante B, Walldius G, Hammar N, Modig K. Lipid levels in midlife and risk of atrial fibrillation over 3 decades-experience from the Swedish AMORIS cohort: a cohort study. PLoS Med. 2022;19(8):e1004044.PubMedPubMedCentral
64.
go back to reference Yang KC, Dudley SC Jr. Oxidative stress and atrial fibrillation: finding a missing piece to the puzzle. Circulation. 2013;128(16):1724–6.PubMedPubMedCentral Yang KC, Dudley SC Jr. Oxidative stress and atrial fibrillation: finding a missing piece to the puzzle. Circulation. 2013;128(16):1724–6.PubMedPubMedCentral
65.
go back to reference Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr Cardiol Rep. 2013;15(9):400.PubMedPubMedCentral Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr Cardiol Rep. 2013;15(9):400.PubMedPubMedCentral
66.
go back to reference Lind V, Hammar N, Lundman P, Friberg L, Talbäck M, Walldius G, et al. Impaired fasting glucose: a risk factor for atrial fibrillation and Heart Failure. Cardiovasc Diabetol. 2021;20(1):227.PubMedPubMedCentral Lind V, Hammar N, Lundman P, Friberg L, Talbäck M, Walldius G, et al. Impaired fasting glucose: a risk factor for atrial fibrillation and Heart Failure. Cardiovasc Diabetol. 2021;20(1):227.PubMedPubMedCentral
67.
go back to reference Holmes MV, Richardson TG, Ference BA, Davies NM, Davey Smith G. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nat Rev Cardiol. 2021;18(6):435–53.PubMed Holmes MV, Richardson TG, Ference BA, Davies NM, Davey Smith G. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nat Rev Cardiol. 2021;18(6):435–53.PubMed
68.
go back to reference Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample mendelian randomization. Genet Epidemiol. 2016;40(7):597–608.PubMedPubMedCentral Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample mendelian randomization. Genet Epidemiol. 2016;40(7):597–608.PubMedPubMedCentral
69.
go back to reference Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, et al. Atlas of plasma NMR biomarkers for health and Disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023;14(1):604.PubMedPubMedCentral Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, et al. Atlas of plasma NMR biomarkers for health and Disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023;14(1):604.PubMedPubMedCentral
Metadata
Title
SGLT2 inhibition, circulating metabolites, and atrial fibrillation: a Mendelian randomization study
Authors
Jiang Li
Yuefeng Yu
Ying Sun
Bowei Yu
Xiao Tan
Bin Wang
Yingli Lu
Ningjian Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2023
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-02019-8

Other articles of this Issue 1/2023

Cardiovascular Diabetology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine