Skip to main content
Top
Published in: Virchows Archiv 6/2013

01-12-2013 | Original Article

ATG9A overexpression is associated with disease recurrence and poor survival in patients with oral squamous cell carcinoma

Authors: Jen-Yang Tang, Edward Hsi, Ya-Chun Huang, Nicholas Chung-Heng Hsu, Yuk-Kwan Chen, Pei-Yi Chu, Chee-Yin Chai

Published in: Virchows Archiv | Issue 6/2013

Login to get access

Abstract

ATG9A is an integral membrane protein required for autophagosome formation and a membrane carrier in the autophagy pathways. The present study was designed to investigate the expression of ATG9A in oral squamous cell carcinoma (OSCC). Clinically annotated tumor specimens from 90 patients with OSCC were subjected to immunohistochemistry using an antibody against ATG9A and immunoreactivity was scored using an immunoreactivity score (IRS). Scores were compared with clinical and pathologic data to assess association with outcome. Overexpression of ATG9A was defined as an IRS of ≥9 by receiver operating characteristics curve analysis and was identified in 25 (28 %) of 90 cases. ATG9A overexpression was associated with disease recurrence and overall survival (OS) in both univariate (p = 0.030 and 0.025, respectively) and multivariate (p = 0.026 and 0.038, respectively) Cox analyses. Kaplan–Meier plots also showed that patients with ATG9A overexpression had shorter 3-year OS (p = 0.017) and time to recurrence (p = 0.021) than those with low ATG9A expression. These results suggest that the presence of ATG9A in the cytoplasm of tumor cells may be an independent biomarker for disease recurrence and survival in patients with OSCC.
Literature
1.
go back to reference Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999. CA Cancer J Clin 49(8–31):31 Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999. CA Cancer J Clin 49(8–31):31
2.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRef Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRef
3.
go back to reference Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cellular and molecular life sciences : CMLS 61:1439–1454PubMedCrossRef Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cellular and molecular life sciences : CMLS 61:1439–1454PubMedCrossRef
4.
go back to reference Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRef Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRef
6.
go back to reference Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981PubMedCrossRef Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981PubMedCrossRef
7.
go back to reference Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 19:4492–4505PubMedCrossRef Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen EL, Millen J, Goldfarb DS, Thumm M (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell 19:4492–4505PubMedCrossRef
8.
go back to reference Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Gene Cell: Devoted Mol Cell Mech 14:525–538CrossRef Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Gene Cell: Devoted Mol Cell Mech 14:525–538CrossRef
9.
go back to reference Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900PubMedCrossRef Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900PubMedCrossRef
10.
go back to reference Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, Scherer SW (2005) Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 280:18283–18290PubMedCrossRef Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T, Nakabayashi K, Scherer SW (2005) Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem 280:18283–18290PubMedCrossRef
11.
go back to reference Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Canc Therapeut 10:1533–1541CrossRef Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Canc Therapeut 10:1533–1541CrossRef
12.
go back to reference Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Canc Cell 10:51–64CrossRef Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Canc Cell 10:51–64CrossRef
13.
go back to reference Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906PubMedCrossRef Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906PubMedCrossRef
14.
go back to reference Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nature reviews. Cancer 7:961–967PubMed Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nature reviews. Cancer 7:961–967PubMed
16.
go back to reference Webber JL, Young AR, Tooze SA (2007) Atg9 trafficking in mammalian cells. Autophagy 3:54–56PubMed Webber JL, Young AR, Tooze SA (2007) Atg9 trafficking in mammalian cells. Autophagy 3:54–56PubMed
17.
go back to reference White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 15:5308–5316CrossRef White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 15:5308–5316CrossRef
18.
go back to reference Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558PubMedCrossRef Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558PubMedCrossRef
19.
go back to reference Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322PubMedCrossRef Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322PubMedCrossRef
20.
go back to reference Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig 117:326–336PubMedCrossRef Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig 117:326–336PubMedCrossRef
21.
go back to reference Li X, Fan Z (2010) The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Canc Res 70:5942–5952CrossRef Li X, Fan Z (2010) The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Canc Res 70:5942–5952CrossRef
22.
go back to reference Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677PubMedCrossRef Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677PubMedCrossRef
Metadata
Title
ATG9A overexpression is associated with disease recurrence and poor survival in patients with oral squamous cell carcinoma
Authors
Jen-Yang Tang
Edward Hsi
Ya-Chun Huang
Nicholas Chung-Heng Hsu
Yuk-Kwan Chen
Pei-Yi Chu
Chee-Yin Chai
Publication date
01-12-2013
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 6/2013
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-013-1482-5

Other articles of this Issue 6/2013

Virchows Archiv 6/2013 Go to the issue