Skip to main content
Top
Published in: Molecular Cancer 1/2003

Open Access 01-12-2003 | Hypothesis

At the crossroads of SUMO and NF-κB

Authors: Martin P Kracklauer, Christian Schmidt

Published in: Molecular Cancer | Issue 1/2003

Login to get access

Abstract

Background

Recognition of pathogens by immune receptors leads to activation of macrophages, dendritic cells, and lymphocytes. Signals are communicated to enhance expression of target molecules such as cytokines and adhesion molecules, depending on activation of various inducible transcription factors, among which the family NF-κB transcription factors plays an evolutionarily conserved and critical role. Classical activation of NF-κB involves phosphorylation, polyubiquitination and subsequent degradation of the inhibitor molecules of NF-κB, referred to as IκB. Modification of IκBα, one of the mammalian IκB isoforms, with the small ubiquitin-like modifier (SUMO) results its protection from degradation.

Presentation of the hypothesis

SUMO-IκBα localizes in the nucleus. The nuclear SUMO-IκBα pool may be dynamic. SUMO-IκBα functions as synergy control factor.

Testing the hypothesis

Immunoprecipitation from cellular fractions, 35S methionine pulse-chase, and FRET assays should reveal the localization of SUMO-IκBα and the dynamics of the pool. Expression of SUMOylation defective IκBα in an IκBα -/- background should yield insights into the function of SUMO-IκBα.

Implication of the hypothesis

IκBα contains the required SUMOylation motif but IκBβ does not. The suggested study would provide evidence whether or not IκBα and IκBβ can substitute each other. In addition, the suggested assays would reveal a possible redundancy in controlling transcriptional activity of NF-κB.
Literature
1.
go back to reference Ghosh S, May MJ, Kopp EB: NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998, 16: 225-260. 10.1146/annurev.immunol.16.1.225CrossRefPubMed Ghosh S, May MJ, Kopp EB: NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998, 16: 225-260. 10.1146/annurev.immunol.16.1.225CrossRefPubMed
2.
go back to reference Luque I, Gelinas C: Rel/NF-κB and IκB factors in oncogenesis. Semin Cancer Biol. 1997, 8: 103-111. 10.1006/scbi.1997.0061CrossRefPubMed Luque I, Gelinas C: Rel/NF-κB and IκB factors in oncogenesis. Semin Cancer Biol. 1997, 8: 103-111. 10.1006/scbi.1997.0061CrossRefPubMed
3.
go back to reference Barnes PJ, Karin M: Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997, 336: 1066-1071. 10.1056/NEJM199704103361506CrossRefPubMed Barnes PJ, Karin M: Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997, 336: 1066-1071. 10.1056/NEJM199704103361506CrossRefPubMed
4.
go back to reference Sonenshein GE: Rel/NF-κB transcription factors and the control of apoptosis. Semin Cancer Biol. 1997, 8: 113-119. 10.1006/scbi.1997.0062CrossRefPubMed Sonenshein GE: Rel/NF-κB transcription factors and the control of apoptosis. Semin Cancer Biol. 1997, 8: 113-119. 10.1006/scbi.1997.0062CrossRefPubMed
5.
go back to reference Reach M, Galindo RL, Towb P, Allen JL, Karin M, Wassermann SA: A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol. 1996, 180: 353-364. 10.1006/dbio.1996.0308CrossRefPubMed Reach M, Galindo RL, Towb P, Allen JL, Karin M, Wassermann SA: A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev Biol. 1996, 180: 353-364. 10.1006/dbio.1996.0308CrossRefPubMed
6.
go back to reference Sen R, Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986, 46: 705-716.CrossRefPubMed Sen R, Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986, 46: 705-716.CrossRefPubMed
7.
go back to reference Sen R, Baltimore D: Inducibility of κimmunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell. 1986, 47: 921-928.CrossRefPubMed Sen R, Baltimore D: Inducibility of κimmunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell. 1986, 47: 921-928.CrossRefPubMed
8.
go back to reference Lenardo MJ, Baltimore D: NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell. 1989, 58: 227-229.CrossRefPubMed Lenardo MJ, Baltimore D: NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell. 1989, 58: 227-229.CrossRefPubMed
9.
go back to reference Lenardo MJ, Fan CM, Maniatis T, Baltimore D: The involvement of NF-κB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell. 1989, 57: 287-294.CrossRefPubMed Lenardo MJ, Fan CM, Maniatis T, Baltimore D: The involvement of NF-κB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell. 1989, 57: 287-294.CrossRefPubMed
10.
go back to reference Siebenlist U, Franzoso G, Brown K: Structure, regulation and function of NF-κB. Annu Rev Cell Biol. 1994, 10: 405-455.CrossRefPubMed Siebenlist U, Franzoso G, Brown K: Structure, regulation and function of NF-κB. Annu Rev Cell Biol. 1994, 10: 405-455.CrossRefPubMed
11.
go back to reference Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S: Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 1995, 9: 2723-2735.CrossRefPubMed Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S: Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 1995, 9: 2723-2735.CrossRefPubMed
12.
go back to reference Baldwin AS: The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol. 1996, 14: 649-683. 10.1146/annurev.immunol.14.1.649CrossRefPubMed Baldwin AS: The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol. 1996, 14: 649-683. 10.1146/annurev.immunol.14.1.649CrossRefPubMed
13.
go back to reference Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol. 2000, 18: 621-663. 10.1146/annurev.immunol.18.1.621CrossRefPubMed Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol. 2000, 18: 621-663. 10.1146/annurev.immunol.18.1.621CrossRefPubMed
14.
15.
16.
go back to reference Baeuerle PA, Baltimore D: A 65-kD subunit of active NF-κB is required for inhibition of NF-κB by IκB. Genes Dev. 1989, 3: 1689-1698.CrossRefPubMed Baeuerle PA, Baltimore D: A 65-kD subunit of active NF-κB is required for inhibition of NF-κB by IκB. Genes Dev. 1989, 3: 1689-1698.CrossRefPubMed
17.
go back to reference Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U: Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science. 1995, 267: 1485-1488.CrossRefPubMed Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U: Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science. 1995, 267: 1485-1488.CrossRefPubMed
18.
go back to reference Chen ZJ, Parent L, Maniatis T: Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell. 1996, 84: 853-862.CrossRefPubMed Chen ZJ, Parent L, Maniatis T: Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell. 1996, 84: 853-862.CrossRefPubMed
19.
go back to reference Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M: Identification and characterization of an IκB kinase. Cell. 1997, 90: 373-383.CrossRefPubMed Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M: Identification and characterization of an IκB kinase. Cell. 1997, 90: 373-383.CrossRefPubMed
20.
go back to reference Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M: The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell. 1997, 91: 243-252.CrossRefPubMed Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M: The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell. 1997, 91: 243-252.CrossRefPubMed
21.
go back to reference DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 1997, 388: 548-554. 10.1038/41493CrossRefPubMed DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 1997, 388: 548-554. 10.1038/41493CrossRefPubMed
22.
go back to reference Zandi E, Chen Y, Karin M: Direct phosphorylation of IκB by IKKα and IKKβ : discrimination between free and NF-κB-bound substrate. Science. 1998, 281: 1360-1363. 10.1126/science.281.5381.1360CrossRefPubMed Zandi E, Chen Y, Karin M: Direct phosphorylation of IκB by IKKα and IKKβ : discrimination between free and NF-κB-bound substrate. Science. 1998, 281: 1360-1363. 10.1126/science.281.5381.1360CrossRefPubMed
24.
go back to reference Sun SC, Ganchi PA, Ballard DW, Greene WC: NF-κB controls expression of inhibitor IκBα : evidence for an inducible autoregulatory pathway. Science. 1993, 259: 1912-1915.CrossRefPubMed Sun SC, Ganchi PA, Ballard DW, Greene WC: NF-κB controls expression of inhibitor IκBα : evidence for an inducible autoregulatory pathway. Science. 1993, 259: 1912-1915.CrossRefPubMed
26.
go back to reference May MJ, Ghosh S: Rel/NF-κB and IκB proteins: an overview. Semin Cancer Biol. 1997, 8: 63-73. 10.1006/scbi.1997.0057CrossRefPubMed May MJ, Ghosh S: Rel/NF-κB and IκB proteins: an overview. Semin Cancer Biol. 1997, 8: 63-73. 10.1006/scbi.1997.0057CrossRefPubMed
27.
go back to reference Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W: IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J Biol Chem. 1999, 274: 30353-30356. 10.1074/jbc.274.43.30353CrossRefPubMed Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W: IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J Biol Chem. 1999, 274: 30353-30356. 10.1074/jbc.274.43.30353CrossRefPubMed
28.
go back to reference Wang D, Westerheide SD, Hanson JL, Baldwin AS: Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem. 2000, 275: 32592-32597. 10.1074/jbc.M001358200CrossRefPubMed Wang D, Westerheide SD, Hanson JL, Baldwin AS: Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem. 2000, 275: 32592-32597. 10.1074/jbc.M001358200CrossRefPubMed
29.
go back to reference Zhong H, Voll RE, Ghosh S: Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998, 1: 661-671.CrossRefPubMed Zhong H, Voll RE, Ghosh S: Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998, 1: 661-671.CrossRefPubMed
30.
go back to reference Koul D, Yao Y, Abbruzzese JL, Yung WK, Reddy SA: Tumor suppressor MMAC/PTEN inhibits cytokine-induced NF-κB activation without interfering with the IκB degradation pathway. J Biol Chem. 2001, 276: 11402-11408. 10.1074/jbc.M007806200CrossRefPubMed Koul D, Yao Y, Abbruzzese JL, Yung WK, Reddy SA: Tumor suppressor MMAC/PTEN inhibits cytokine-induced NF-κB activation without interfering with the IκB degradation pathway. J Biol Chem. 2001, 276: 11402-11408. 10.1074/jbc.M007806200CrossRefPubMed
31.
go back to reference Chen LF, Mu Y, Greene WC: Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 2002, 21: 6539-6548. 10.1093/emboj/cdf660PubMedCentralCrossRefPubMed Chen LF, Mu Y, Greene WC: Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 2002, 21: 6539-6548. 10.1093/emboj/cdf660PubMedCentralCrossRefPubMed
32.
go back to reference Ashburner BP, Westerheide SD, Baldwin AS: The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001, 21: 7065-7077. 10.1128/MCB.21.20.7065-7077.2001PubMedCentralCrossRefPubMed Ashburner BP, Westerheide SD, Baldwin AS: The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001, 21: 7065-7077. 10.1128/MCB.21.20.7065-7077.2001PubMedCentralCrossRefPubMed
33.
go back to reference Lee SK, Kim JH, Lee YC, Cheong J, Lee JW: Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-κB, and serum response factor. J Biol Chem. 2000, 275: 12470-12474. 10.1074/jbc.275.17.12470CrossRefPubMed Lee SK, Kim JH, Lee YC, Cheong J, Lee JW: Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-κB, and serum response factor. J Biol Chem. 2000, 275: 12470-12474. 10.1074/jbc.275.17.12470CrossRefPubMed
34.
go back to reference Bhaskar V, Smith M, Courey AJ: Conjugation of Smt3 to dorsal may potentiate the Drosophila immune response. Mol Cell Biol. 2002, 22: 492-504. 10.1128/MCB.22.2.492-504.2002PubMedCentralCrossRefPubMed Bhaskar V, Smith M, Courey AJ: Conjugation of Smt3 to dorsal may potentiate the Drosophila immune response. Mol Cell Biol. 2002, 22: 492-504. 10.1128/MCB.22.2.492-504.2002PubMedCentralCrossRefPubMed
35.
go back to reference Freiman RN, Tjian R: Regulating the regulators: lysine modifications make their mark. Cell. 2003, 112: 11-17.CrossRefPubMed Freiman RN, Tjian R: Regulating the regulators: lysine modifications make their mark. Cell. 2003, 112: 11-17.CrossRefPubMed
36.
go back to reference Hochstrasser M: Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol. 2000, 2: E153-157. 10.1038/35019643CrossRefPubMed Hochstrasser M: Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol. 2000, 2: E153-157. 10.1038/35019643CrossRefPubMed
37.
go back to reference Melchior F: SUMO – nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000, 16: 591-626. 10.1146/annurev.cellbio.16.1.591CrossRefPubMed Melchior F: SUMO – nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000, 16: 591-626. 10.1146/annurev.cellbio.16.1.591CrossRefPubMed
38.
go back to reference Liou ML, Liou HC: The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis. J Biol Chem. 1999, 274: 10145-10153. 10.1074/jbc.274.15.10145CrossRefPubMed Liou ML, Liou HC: The ubiquitin-homology protein, DAP-1, associates with tumor necrosis factor receptor (p60) death domain and induces apoptosis. J Biol Chem. 1999, 274: 10145-10153. 10.1074/jbc.274.15.10145CrossRefPubMed
39.
go back to reference Hanania U, Furman-Matarasso N, Ron M, Avni A: Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 1999, 19: 533-541. 10.1046/j.1365-313X.1999.00547.xCrossRefPubMed Hanania U, Furman-Matarasso N, Ron M, Avni A: Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 1999, 19: 533-541. 10.1046/j.1365-313X.1999.00547.xCrossRefPubMed
40.
go back to reference Panse VG, Kuster B, Gerstberger T, Hurt E: Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol. 2003, 5: 21-27. 10.1038/ncb893CrossRefPubMed Panse VG, Kuster B, Gerstberger T, Hurt E: Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol. 2003, 5: 21-27. 10.1038/ncb893CrossRefPubMed
41.
go back to reference Pichler A, Melchior F: Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic. 2002, 3: 381-387. 10.1034/j.1600-0854.2002.30601.xCrossRefPubMed Pichler A, Melchior F: Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic. 2002, 3: 381-387. 10.1034/j.1600-0854.2002.30601.xCrossRefPubMed
42.
go back to reference Stade K, Vogel F, Schwienhorst I, Meusser B, Volkwein C, Nentwig B, Dohmen RJ, Sommer T: A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. J Biol Chem. 2002, 277: 49554-49561. 10.1074/jbc.M207991200CrossRefPubMed Stade K, Vogel F, Schwienhorst I, Meusser B, Volkwein C, Nentwig B, Dohmen RJ, Sommer T: A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. J Biol Chem. 2002, 277: 49554-49561. 10.1074/jbc.M207991200CrossRefPubMed
43.
go back to reference Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW: Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA. 2003, 100: 3257-3262. 10.1073/pnas.0637114100PubMedCentralCrossRefPubMed Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW: Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA. 2003, 100: 3257-3262. 10.1073/pnas.0637114100PubMedCentralCrossRefPubMed
44.
go back to reference Zhang H, Saitoh H, Matunis MJ: Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol. 2002, 22: 6498-6508. 10.1128/MCB.22.18.6498-6508.2002PubMedCentralCrossRefPubMed Zhang H, Saitoh H, Matunis MJ: Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol. 2002, 22: 6498-6508. 10.1128/MCB.22.18.6498-6508.2002PubMedCentralCrossRefPubMed
45.
go back to reference Ross S, Best JL, Zon LI, Gill G: SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell. 2002, 10: 831-842.CrossRefPubMed Ross S, Best JL, Zon LI, Gill G: SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell. 2002, 10: 831-842.CrossRefPubMed
46.
go back to reference Gill G: Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev. 2003, 13: 108-113. 10.1016/S0959-437X(03)00021-2CrossRefPubMed Gill G: Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev. 2003, 13: 108-113. 10.1016/S0959-437X(03)00021-2CrossRefPubMed
47.
go back to reference Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT: p300 Transcriptional Repression Is Mediated by SUMO Modification. Mol Cell. 2003, 11: 1043-1054.CrossRefPubMed Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT: p300 Transcriptional Repression Is Mediated by SUMO Modification. Mol Cell. 2003, 11: 1043-1054.CrossRefPubMed
48.
go back to reference Desterro JM, Rodriguez MS, Hay RT: SUMO-1 modification of IκBα inhibits NF-κB activation. Mol Cell. 1998, 2: 233-239.CrossRefPubMed Desterro JM, Rodriguez MS, Hay RT: SUMO-1 modification of IκBα inhibits NF-κB activation. Mol Cell. 1998, 2: 233-239.CrossRefPubMed
49.
go back to reference Rodriguez MS, Dargemont C, Hay RT: SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem. 2001, 276: 12654-12659. 10.1074/jbc.M009476200CrossRefPubMed Rodriguez MS, Dargemont C, Hay RT: SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem. 2001, 276: 12654-12659. 10.1074/jbc.M009476200CrossRefPubMed
50.
go back to reference Roff M, Thompson J, Rodriguez MS, Jacque JM, Baleux F, Arenzana-Seisdedos F, Hay RT: Role of IκBα ubiquitination in signal-induced activation of NF-κB in vivo. J Biol Chem. 1996, 271: 7844-7850. 10.1074/jbc.271.13.7844CrossRefPubMed Roff M, Thompson J, Rodriguez MS, Jacque JM, Baleux F, Arenzana-Seisdedos F, Hay RT: Role of IκBα ubiquitination in signal-induced activation of NF-κB in vivo. J Biol Chem. 1996, 271: 7844-7850. 10.1074/jbc.271.13.7844CrossRefPubMed
51.
go back to reference Huang TT, Miyamoto S: Postrepression activation of NF-κB requires the amino-terminal nuclear export signal specific to IκBα. Mol Cell Biol. 2001, 21: 4737-4747. 10.1128/MCB.21.14.4737-4747.2001PubMedCentralCrossRefPubMed Huang TT, Miyamoto S: Postrepression activation of NF-κB requires the amino-terminal nuclear export signal specific to IκBα. Mol Cell Biol. 2001, 21: 4737-4747. 10.1128/MCB.21.14.4737-4747.2001PubMedCentralCrossRefPubMed
52.
go back to reference Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT: SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999, 18: 6455-6461. 10.1093/emboj/18.22.6455PubMedCentralCrossRefPubMed Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT: SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999, 18: 6455-6461. 10.1093/emboj/18.22.6455PubMedCentralCrossRefPubMed
53.
go back to reference Saitoh H, Hinchey J: Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 2000, 275: 6252-6258. 10.1074/jbc.275.9.6252CrossRefPubMed Saitoh H, Hinchey J: Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 2000, 275: 6252-6258. 10.1074/jbc.275.9.6252CrossRefPubMed
54.
go back to reference Saltzman A, Searfoss G, Marcireau C, Stone M, Ressner R, Munro R, Franks C, D'Alonzo J, Tocque B, Jaye M, Ivashchenko Y: hUBC9 associates with MEKK1 and type I TNF-α receptor and stimulates NF-κB activity. FEBS Lett. 1998, 425: 431-435. 10.1016/S0014-5793(98)00287-7CrossRefPubMed Saltzman A, Searfoss G, Marcireau C, Stone M, Ressner R, Munro R, Franks C, D'Alonzo J, Tocque B, Jaye M, Ivashchenko Y: hUBC9 associates with MEKK1 and type I TNF-α receptor and stimulates NF-κB activity. FEBS Lett. 1998, 425: 431-435. 10.1016/S0014-5793(98)00287-7CrossRefPubMed
55.
go back to reference Hay RT, Vuillard L, Desterro JM, Rodriguez MS: Control of NF-κB transcriptional activation by signal induced proteolysis of IκBα. Philos Trans R Soc Lond B Biol Sci. 1999, 354: 1601-1609. 10.1098/rstb.1999.0504PubMedCentralCrossRefPubMed Hay RT, Vuillard L, Desterro JM, Rodriguez MS: Control of NF-κB transcriptional activation by signal induced proteolysis of IκBα. Philos Trans R Soc Lond B Biol Sci. 1999, 354: 1601-1609. 10.1098/rstb.1999.0504PubMedCentralCrossRefPubMed
56.
go back to reference Cascio SM: Novel strategies for immortalization of human hepatocytes. Artif Organs. 2001, 25: 529-538. 10.1046/j.1525-1594.2001.025007529.xCrossRefPubMed Cascio SM: Novel strategies for immortalization of human hepatocytes. Artif Organs. 2001, 25: 529-538. 10.1046/j.1525-1594.2001.025007529.xCrossRefPubMed
57.
go back to reference Mendonca MS, Antoniono RJ, Latham KM, Stanbridge EJ, Redpath JL: Characterization of intestinal alkaline phosphatase expression and the tumorigenic potential of gamma-irradiated HeLa x fibroblast cell hybrids. Cancer Res. 1991, 51: 4455-4462.PubMed Mendonca MS, Antoniono RJ, Latham KM, Stanbridge EJ, Redpath JL: Characterization of intestinal alkaline phosphatase expression and the tumorigenic potential of gamma-irradiated HeLa x fibroblast cell hybrids. Cancer Res. 1991, 51: 4455-4462.PubMed
58.
go back to reference Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelerie F, Thomas D, Hay RT: Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol Cell Biol. 1995, 15: 2689-2696.PubMedCentralPubMed Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelerie F, Thomas D, Hay RT: Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol Cell Biol. 1995, 15: 2689-2696.PubMedCentralPubMed
59.
go back to reference Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA: Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem. 2002, 277: 10842-10851. 10.1074/jbc.M112475200CrossRefPubMed Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA: Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem. 2002, 277: 10842-10851. 10.1074/jbc.M112475200CrossRefPubMed
60.
go back to reference Day RN, Periasamy A, Schaufele F: Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 2001, 25: 4-18. 10.1006/meth.2001.1211CrossRefPubMed Day RN, Periasamy A, Schaufele F: Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 2001, 25: 4-18. 10.1006/meth.2001.1211CrossRefPubMed
61.
go back to reference Biermann E, Baack M, Kreitz S, Knippers R: Synthesis and turn-over of the replicative Cdc6 protein during the HeLa cell cycle. Eur J Biochem. 2002, 269: 1040-1046. 10.1046/j.0014-2956.2001.02746.xCrossRefPubMed Biermann E, Baack M, Kreitz S, Knippers R: Synthesis and turn-over of the replicative Cdc6 protein during the HeLa cell cycle. Eur J Biochem. 2002, 269: 1040-1046. 10.1046/j.0014-2956.2001.02746.xCrossRefPubMed
62.
go back to reference Iborra FJ, Jackson DA, Cook PR: Coupled transcription and translation within nuclei of mammalian cells. Science. 2001, 293: 1139-1142. 10.1126/science.1061216CrossRefPubMed Iborra FJ, Jackson DA, Cook PR: Coupled transcription and translation within nuclei of mammalian cells. Science. 2001, 293: 1139-1142. 10.1126/science.1061216CrossRefPubMed
63.
go back to reference Cheng JD, Ryseck RP, Attar RM, Dambach D, Bravo R: Functional redundancy of the nuclear factor κB inhibitors IκBα and IκBβ. J Exp Med. 1998, 188: 1055-1062. 10.1084/jem.188.6.1055PubMedCentralCrossRefPubMed Cheng JD, Ryseck RP, Attar RM, Dambach D, Bravo R: Functional redundancy of the nuclear factor κB inhibitors IκBα and IκBβ. J Exp Med. 1998, 188: 1055-1062. 10.1084/jem.188.6.1055PubMedCentralCrossRefPubMed
64.
go back to reference Velasco M, Diaz-Guerra MJ, Martin-Sanz P, Alvarez A, Bosca L: Rapid Up-regulation of IκBβ and abrogation of NF-κB activity in peritoneal macrophages stimulated with lipopolysaccharide. J Biol Chem. 1997, 272: 23025-23030. 10.1074/jbc.272.37.23025CrossRefPubMed Velasco M, Diaz-Guerra MJ, Martin-Sanz P, Alvarez A, Bosca L: Rapid Up-regulation of IκBβ and abrogation of NF-κB activity in peritoneal macrophages stimulated with lipopolysaccharide. J Biol Chem. 1997, 272: 23025-23030. 10.1074/jbc.272.37.23025CrossRefPubMed
65.
go back to reference Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IκB-NF-κB signaling module: temporal control and selective gene activation. Science. 2002, 298: 1241-1245. 10.1126/science.1071914CrossRefPubMed Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IκB-NF-κB signaling module: temporal control and selective gene activation. Science. 2002, 298: 1241-1245. 10.1126/science.1071914CrossRefPubMed
66.
go back to reference Whiteside ST, Epinat JC, Rice NR, Israël A: IκBε, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 1997, 16: 1413-1426. 10.1093/emboj/16.6.1413PubMedCentralCrossRefPubMed Whiteside ST, Epinat JC, Rice NR, Israël A: IκBε, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 1997, 16: 1413-1426. 10.1093/emboj/16.6.1413PubMedCentralCrossRefPubMed
67.
go back to reference Beg AA, Sha WC, Bronson RT, Baltimore D: Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 1995, 9: 2736-2746.CrossRefPubMed Beg AA, Sha WC, Bronson RT, Baltimore D: Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 1995, 9: 2736-2746.CrossRefPubMed
68.
go back to reference Cohen-Tannoudji M, Babinet C: Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod. 1998, 4: 929-938. 10.1093/molehr/4.10.929CrossRefPubMed Cohen-Tannoudji M, Babinet C: Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod. 1998, 4: 929-938. 10.1093/molehr/4.10.929CrossRefPubMed
69.
go back to reference Müller U: Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev. 1999, 82: 3-21. 10.1016/S0925-4773(99)00021-0CrossRefPubMed Müller U: Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev. 1999, 82: 3-21. 10.1016/S0925-4773(99)00021-0CrossRefPubMed
70.
go back to reference Parmely MJ, Wang F, Wright D: -interferon prevents the inhibitory effects of oxidative stress on host responses to Escherichia coli infection. Infect Immun. 2001, 69: 2621-2629. 10.1128/IAI.69.4.2621-2629.2001PubMedCentralCrossRefPubMed Parmely MJ, Wang F, Wright D: -interferon prevents the inhibitory effects of oxidative stress on host responses to Escherichia coli infection. Infect Immun. 2001, 69: 2621-2629. 10.1128/IAI.69.4.2621-2629.2001PubMedCentralCrossRefPubMed
71.
go back to reference Cochran JR, Khan AM, Elidemir O, Xue H, Cua B, Fullmer J, Larsen GL, Colasurdo GN: Influence of lipopolysaccharide exposure on airway function and allergic responses in developing mice. Pediatr Pulmonol. 2002, 34: 267-277. 10.1002/ppul.10161CrossRefPubMed Cochran JR, Khan AM, Elidemir O, Xue H, Cua B, Fullmer J, Larsen GL, Colasurdo GN: Influence of lipopolysaccharide exposure on airway function and allergic responses in developing mice. Pediatr Pulmonol. 2002, 34: 267-277. 10.1002/ppul.10161CrossRefPubMed
72.
go back to reference Tian S, Poukka H, Palvimo JJ, Jänne OA: Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J. 2002, 367: 907-911. 10.1042/BJ20021085PubMedCentralCrossRefPubMed Tian S, Poukka H, Palvimo JJ, Jänne OA: Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J. 2002, 367: 907-911. 10.1042/BJ20021085PubMedCentralCrossRefPubMed
Metadata
Title
At the crossroads of SUMO and NF-κB
Authors
Martin P Kracklauer
Christian Schmidt
Publication date
01-12-2003
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2003
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-2-39

Other articles of this Issue 1/2003

Molecular Cancer 1/2003 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine