Skip to main content
Top
Published in: Brain Structure and Function 2/2016

Open Access 01-03-2016 | Original Article

Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates

Authors: Lara Eid, André Parent, Martin Parent

Published in: Brain Structure and Function | Issue 2/2016

Login to get access

Abstract

The internal (GPi) and external (GPe) segments of the primate globus pallidus receive a significant cholinergic (ACh) innervation from the brainstem pedunculopontine tegmental nucleus. The present immunohistochemical study describes this innervation in the squirrel monkey (Saimiri sciureus), as visualized with an antibody raised against choline acetyltransferase (ChAT). At the light microscopic level, unbiased stereological quantification of ChAT positive (+) axon varicosities reveals a significantly lower density of innervation in GPi (0.26 ± 0.03 × 106) than in GPe (0.47 ± 0.07 × 106 varicosities/mm3 of tissue), with the anterior half of both segments more densely innervated than the posterior half. Neuronal density of GPi (3.00 ± 0.13 × 103 neurons/mm3) and GPe (3.62 ± 0.22 × 103 neurons/mm3) yields a mean ratio of ChAT+ axon varicosities per pallidal neuron of 74 ± 10 in the GPi and 128 ± 28 in the GPe. At the electron microscopic level, the pallidal ChAT+ axon varicosities are significantly smaller than their unlabeled counterparts, but are comparable in size and shape in the two pallidal segments. Only a minority of ChAT+ varicosities displays a synaptic specialization (12 % in the GPi and 17 % in the GPe); these scarce synaptic contacts are mostly of the symmetrical type and occur exclusively on pallidal dendrites. No ChAT+ axo-axonic synaptic contacts are observed, suggesting that ACh exerts its modulatory action on pallidal afferents through diffuse transmission, whereas pallidal neurons may be influenced by both volumic and synaptic delivery of ACh.
Literature
go back to reference Armonda RA, Carpenter MB (1991) Distribution of cholinergic pallidal neurons in the squirrel monkey (Saimiri sciureus) based upon choline acetyltransferase. Journal für Hirnforschung 32:357–367PubMed Armonda RA, Carpenter MB (1991) Distribution of cholinergic pallidal neurons in the squirrel monkey (Saimiri sciureus) based upon choline acetyltransferase. Journal für Hirnforschung 32:357–367PubMed
go back to reference Aznavour N, Mechawar N, Descarries L (2002) Comparative analysis of cholinergic innervation in the dorsal hippocampus of adult mouse and rat: a quantitative immunocytochemical study. Hippocampus 12:206–217. doi:10.1002/hipo.1108 CrossRefPubMed Aznavour N, Mechawar N, Descarries L (2002) Comparative analysis of cholinergic innervation in the dorsal hippocampus of adult mouse and rat: a quantitative immunocytochemical study. Hippocampus 12:206–217. doi:10.​1002/​hipo.​1108 CrossRefPubMed
go back to reference Aznavour N, Mechawar N, Watkins KC, Descarries L (2003) Fine structural features of the acetylcholine innervation in the developing neostriatum of rat. J Comp Neurol 460:280–291. doi:10.1002/cne.10660 CrossRefPubMed Aznavour N, Mechawar N, Watkins KC, Descarries L (2003) Fine structural features of the acetylcholine innervation in the developing neostriatum of rat. J Comp Neurol 460:280–291. doi:10.​1002/​cne.​10660 CrossRefPubMed
go back to reference Aznavour N, Watkins KC, Descarries L (2005) Postnatal development of the cholinergic innervation in the dorsal hippocampus of rat: quantitative light and electron microscopic immunocytochemical study. J Comp Neurol 486:61–75. doi:10.1002/cne.20501 CrossRefPubMed Aznavour N, Watkins KC, Descarries L (2005) Postnatal development of the cholinergic innervation in the dorsal hippocampus of rat: quantitative light and electron microscopic immunocytochemical study. J Comp Neurol 486:61–75. doi:10.​1002/​cne.​20501 CrossRefPubMed
go back to reference Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9:178–183CrossRefPubMed Baxter MG, Chiba AA (1999) Cognitive functions of the basal forebrain. Curr Opin Neurobiol 9:178–183CrossRefPubMed
go back to reference Beaudet A, Sotelo C (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206:305–329CrossRefPubMed Beaudet A, Sotelo C (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206:305–329CrossRefPubMed
go back to reference Bernard V, Norm E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600PubMed Bernard V, Norm E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600PubMed
go back to reference Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718CrossRefPubMed Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718CrossRefPubMed
go back to reference Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170CrossRefPubMed Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170CrossRefPubMed
go back to reference Clarke NP, Bolam JP, Bevan MD (1996) Glutamate-enriched inputs from the mesopontine tegmentum to the entopeduncular nucleus in the rat. Eur J Neurosci 8:1363–1376CrossRefPubMed Clarke NP, Bolam JP, Bevan MD (1996) Glutamate-enriched inputs from the mesopontine tegmentum to the entopeduncular nucleus in the rat. Eur J Neurosci 8:1363–1376CrossRefPubMed
go back to reference Clarke NP, Bevan MD, Cozzari C et al (1997) Glutamate-enriched cholinergic synaptic terminals in the entopeduncular nucleus and subthalamic nucleus of the rat. Neuroscience 81:371–385CrossRefPubMed Clarke NP, Bevan MD, Cozzari C et al (1997) Glutamate-enriched cholinergic synaptic terminals in the entopeduncular nucleus and subthalamic nucleus of the rat. Neuroscience 81:371–385CrossRefPubMed
go back to reference Contant C, Umbriaco D, Garcia S et al (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–947CrossRefPubMed Contant C, Umbriaco D, Garcia S et al (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–947CrossRefPubMed
go back to reference Descarries L, Mechawar N (2008) Structural organization of monoamine and acetylcholine neuron systems in the rat CNS. In: Lajtha A, Vizi E (eds) Handbook of neurochemistry and molecular biology. Springer, New York, pp 1–20 Descarries L, Mechawar N (2008) Structural organization of monoamine and acetylcholine neuron systems in the rat CNS. In: Lajtha A, Vizi E (eds) Handbook of neurochemistry and molecular biology. Springer, New York, pp 1–20
go back to reference Descarries L, Parent M (2014) Asynaptic and synaptic innervation by acetylcholine neurons of the central nervous system. In: Pickel V, Segal M (eds) The synapse: structure and function. Neuroscience-Net Reference Book Series, pp 447–460 Descarries L, Parent M (2014) Asynaptic and synaptic innervation by acetylcholine neurons of the central nervous system. In: Pickel V, Segal M (eds) The synapse: structure and function. Neuroscience-Net Reference Book Series, pp 447–460
go back to reference Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625CrossRefPubMed Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625CrossRefPubMed
go back to reference DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38:65–73CrossRefPubMed DeVito JL, Anderson ME, Walsh KE (1980) A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 38:65–73CrossRefPubMed
go back to reference Dykes RW (1997) Mechanisms controlling neuronal plasticity in somatosensory cortex. Can J Physiol Pharmacol 75:535–545CrossRefPubMed Dykes RW (1997) Mechanisms controlling neuronal plasticity in somatosensory cortex. Can J Physiol Pharmacol 75:535–545CrossRefPubMed
go back to reference Eid L, Champigny M, Parent A, Parent M (2013) Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur J Neurosci 37:1659–1668. doi:10.1111/ejn.12164 CrossRefPubMed Eid L, Champigny M, Parent A, Parent M (2013) Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur J Neurosci 37:1659–1668. doi:10.​1111/​ejn.​12164 CrossRefPubMed
go back to reference Emmers R, Akert K (1962) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri Sciureus). The University of Wisconsin Press, Madison Emmers R, Akert K (1962) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri Sciureus). The University of Wisconsin Press, Madison
go back to reference Fox CA, Andrade AN, Qui IJL, Rafols JA (1974) The primate globus pallidus: a Golgi and electron microscopic study. Journal für Hirnforschung 15:75–93PubMed Fox CA, Andrade AN, Qui IJL, Rafols JA (1974) The primate globus pallidus: a Golgi and electron microscopic study. Journal für Hirnforschung 15:75–93PubMed
go back to reference François C, Yelnik J, Percheron G, Fénelon G (1994) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102:305–318CrossRefPubMed François C, Yelnik J, Percheron G, Fénelon G (1994) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102:305–318CrossRefPubMed
go back to reference Frotscher M, Soriano E, Leranth C (1992) Cholinergic and GABAergic neurotransmission in the fascia dentata: electron microscopic immunocytochemical studies in rodents and primates. Epilepsy Res Suppl 7:65–78PubMed Frotscher M, Soriano E, Leranth C (1992) Cholinergic and GABAergic neurotransmission in the fascia dentata: electron microscopic immunocytochemical studies in rodents and primates. Epilepsy Res Suppl 7:65–78PubMed
go back to reference Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27CrossRefPubMed Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27CrossRefPubMed
go back to reference Kayadjanian N, Rétaux S, Menétrey A, Besson MJ (1994) Stimulation by nicotine of the spontaneous release of [3H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res 649:129–135CrossRefPubMed Kayadjanian N, Rétaux S, Menétrey A, Besson MJ (1994) Stimulation by nicotine of the spontaneous release of [3H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res 649:129–135CrossRefPubMed
go back to reference Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209. doi:10.1002/cne.903440203 CrossRefPubMed Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209. doi:10.​1002/​cne.​903440203 CrossRefPubMed
go back to reference Lénárd L, Karádi Z, Faludi B et al (1995) Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res Bull 37:149–155CrossRefPubMed Lénárd L, Karádi Z, Faludi B et al (1995) Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res Bull 37:149–155CrossRefPubMed
go back to reference McGeer PL, McGeer EG, Fibiger HC, Wickson V (1971) Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res 35:308–314CrossRefPubMed McGeer PL, McGeer EG, Fibiger HC, Wickson V (1971) Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res 35:308–314CrossRefPubMed
go back to reference Mechawar N, Cozzari C, Descarries L (2000) Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 428:305–318CrossRefPubMed Mechawar N, Cozzari C, Descarries L (2000) Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 428:305–318CrossRefPubMed
go back to reference Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240. doi:10.1002/cne.902750205 CrossRefPubMed Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240. doi:10.​1002/​cne.​902750205 CrossRefPubMed
go back to reference Miyoshi R, Kito S, Shimoyama M (1989) Quantitative autoradiographic localization of the M1 and M2 subtypes of muscarinic acetylcholine receptors in the monkey brain. Jpn J Pharmacol 51:247–255CrossRefPubMed Miyoshi R, Kito S, Shimoyama M (1989) Quantitative autoradiographic localization of the M1 and M2 subtypes of muscarinic acetylcholine receptors in the monkey brain. Jpn J Pharmacol 51:247–255CrossRefPubMed
go back to reference Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86CrossRefPubMed Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86CrossRefPubMed
go back to reference Parent M, Descarries L (2008) Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol 511:678–691. doi:10.1002/cne.21868 CrossRefPubMed Parent M, Descarries L (2008) Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol 511:678–691. doi:10.​1002/​cne.​21868 CrossRefPubMed
go back to reference Parent A, Hazrati L (1995a) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20:128–154CrossRefPubMed Parent A, Hazrati L (1995a) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20:128–154CrossRefPubMed
go back to reference Parent A, Hazrati L (1995b) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127CrossRefPubMed Parent A, Hazrati L (1995b) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127CrossRefPubMed
go back to reference Parent A, Gravel S, Olivier A (1979) The extrapyramidal and limbic systems relationship at the globus pallidus level: a comparative histochemical study in rat, cat and monkey. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) The extrapyramidal system, its disorders, Advances in Neurology. Raven Press, New York, pp 1–11 Parent A, Gravel S, Olivier A (1979) The extrapyramidal and limbic systems relationship at the globus pallidus level: a comparative histochemical study in rat, cat and monkey. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) The extrapyramidal system, its disorders, Advances in Neurology. Raven Press, New York, pp 1–11
go back to reference Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439:162–175CrossRefPubMed Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439:162–175CrossRefPubMed
go back to reference Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80:178–193CrossRefPubMed Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80:178–193CrossRefPubMed
go back to reference Quik M, Polonskaya Y, Gillespie A et al (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425:58–69CrossRefPubMed Quik M, Polonskaya Y, Gillespie A et al (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425:58–69CrossRefPubMed
go back to reference Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80:245–256CrossRefPubMed Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80:245–256CrossRefPubMed
go back to reference Scarnati E, Di Loreto S, Proia A, Gallié G (1988) The functional role of the pedunculopontine nucleus in the regulation of the electrical activity of entopeduncular neurons in the rat. Arch Ital Biol 126:145–163PubMed Scarnati E, Di Loreto S, Proia A, Gallié G (1988) The functional role of the pedunculopontine nucleus in the regulation of the electrical activity of entopeduncular neurons in the rat. Arch Ital Biol 126:145–163PubMed
go back to reference Smiley JF, Levey AI, Mesulam MM (1999) m2 muscarinic receptor immunolocalization in cholinergic cells of the monkey basal forebrain and striatum. Neuroscience 90:803–814CrossRefPubMed Smiley JF, Levey AI, Mesulam MM (1999) m2 muscarinic receptor immunolocalization in cholinergic cells of the monkey basal forebrain and striatum. Neuroscience 90:803–814CrossRefPubMed
go back to reference Sofroniew MV, Priestley JV, Consolazione A et al (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329:213–223CrossRefPubMed Sofroniew MV, Priestley JV, Consolazione A et al (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Res 329:213–223CrossRefPubMed
go back to reference Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67CrossRefPubMed Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67CrossRefPubMed
go back to reference Sutoo D, Akiyama K, Yabe K, Kohno K (1994) Quantitative analysis of immunohistochemical distributions of cholinergic and catecholaminergic systems in the human brain. Neuroscience 58:227–234CrossRefPubMed Sutoo D, Akiyama K, Yabe K, Kohno K (1994) Quantitative analysis of immunohistochemical distributions of cholinergic and catecholaminergic systems in the human brain. Neuroscience 58:227–234CrossRefPubMed
go back to reference Umbriaco D, Watkins KC, Descarries L et al (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351–373. doi:10.1002/cne.903480304 CrossRefPubMed Umbriaco D, Watkins KC, Descarries L et al (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351–373. doi:10.​1002/​cne.​903480304 CrossRefPubMed
go back to reference Wada E, Wada K, Boulter J et al (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335. doi:10.1002/cne.902840212 CrossRefPubMed Wada E, Wada K, Boulter J et al (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335. doi:10.​1002/​cne.​902840212 CrossRefPubMed
go back to reference Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524CrossRefPubMed Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524CrossRefPubMed
go back to reference Woolf NJ, Butcher LL (1981) Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull 7:487–507CrossRefPubMed Woolf NJ, Butcher LL (1981) Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull 7:487–507CrossRefPubMed
go back to reference Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637CrossRefPubMed Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637CrossRefPubMed
go back to reference Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103:1017–1024CrossRefPubMed Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103:1017–1024CrossRefPubMed
Metadata
Title
Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates
Authors
Lara Eid
André Parent
Martin Parent
Publication date
01-03-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0960-0

Other articles of this Issue 2/2016

Brain Structure and Function 2/2016 Go to the issue