Skip to main content
Top
Published in: Neurosurgical Review 4/2017

01-10-2017 | Case Report

Asymmetric pedicle subtractionosteotomy (aPSO) guided by a 3D-printed model to correct a combined fixed sagittal and coronal imbalance

Authors: Pierre-Pascal Girod, S. Hartmann, P. Kavakebi, J. Obernauer, M. Verius, C. Thomé

Published in: Neurosurgical Review | Issue 4/2017

Login to get access

Abstract

Surgical correction of fixed thoracolumbar deformity is usually achieved by estimating the preoperatively planned correction angles during surgery and is therefore prone to inaccuracy. This is particularly problematic in biplanar deformities. To overcome these difficulties, 3D model for planning, preparation, and simulation of an asymmetric pedicle subtraction osteotomy (aPSO) was printed and used to realign coronal and sagittal balance in case of rigid degenerative kyphoscoliosis. A 59-year-old woman presented with severe back pain and spinal claudication and was diagnosed with a rigid kyphoscoliosis with multilevel spinal stenosis. Spino-pelvic parameters were measured preoperatively (pelvic incidence 47° [PI], lumbar lordosis 18° [LL]; pelvic tilt 42° [PT], T1 pelvic angle 40° [TPA], Cobb angle 33°, sagittal vertical axis 10.5 cm [SVA]). To aid the complex deformity in the sagittal and coronal plane, a 1:1 3D model of the spine was printed according to the preoperative computed tomography (CT). With the use of a rebalancing software, the spine was prepared in vitro as a model for intraoperative realignment and the correction was preoperatively simulated. Surgery was accomplished according to the preoperative software-guided plan. Asymmetric pedicle subtraction osteotomy (aPSO) of L3 identical to the 3D model was performed. Additionally, a Smith-Peterson osteotomy of L4/5 with transforaminal lumbar interbody fusion (TLIF) and laminectomy of L2–S1 with pedicle screw instrumentation TH12–S1 was accomplished. Postoperative radiological parameters revealed good success (LL 40°, SVA 6 cm, PT 19°, TPA 22°, and a Cobb angle of 8°). Improvement of the Oswestry disability index (ODI) of 42 to 18, the visual analog scale (VAS) of 8 to 1, and walking distance 100 to 8000 m compared to preoperatively resulted at 24 months follow-up. The precise coronal and sagittal correction of a rigid degenerative kyphoscoliosis presents a major challenge. Asymmetric PSO is able to realign the thoracolumbar spine in both the coronal and sagittal planes. The creation of an in vitro 3D-printed model of a patient’s spinal deformity in combination with a software to calculate the correction angles facilitates preoperative planning and implementation of aPSO.
Literature
3.
go back to reference Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976) 35:2224–2231. doi:10.1097/BRS.0b013e3181ee6bd4 CrossRef Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976) 35:2224–2231. doi:10.​1097/​BRS.​0b013e3181ee6bd4​ CrossRef
5.
go back to reference Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353CrossRef Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353CrossRef
6.
go back to reference Kothbauer K, Schmid UD, Seiler RW, Eisner W (1994) Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery 34:702–707 discussion 707 CrossRefPubMed Kothbauer K, Schmid UD, Seiler RW, Eisner W (1994) Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery 34:702–707 discussion 707 CrossRefPubMed
7.
go back to reference James HE, Mulcahy JJ, Walsh JW, Kaplan GW (1979) Use of anal sphincter electromyography during operations on the conus medullaris and sacral nerve roots. Neurosurgery 4:521–523CrossRefPubMed James HE, Mulcahy JJ, Walsh JW, Kaplan GW (1979) Use of anal sphincter electromyography during operations on the conus medullaris and sacral nerve roots. Neurosurgery 4:521–523CrossRefPubMed
8.
go back to reference Barrey C, Perrin G, Michel F, Vital JM, Obeid I (2014) Pedicle subtraction osteotomy in the lumbar spine: indications, technical aspects, results and complications. Eur J Orthop Surg Traumatol 24(Suppl 1):S21–S30. doi:10.1007/s00590-014-1470-8 CrossRefPubMed Barrey C, Perrin G, Michel F, Vital JM, Obeid I (2014) Pedicle subtraction osteotomy in the lumbar spine: indications, technical aspects, results and complications. Eur J Orthop Surg Traumatol 24(Suppl 1):S21–S30. doi:10.​1007/​s00590-014-1470-8 CrossRefPubMed
9.
go back to reference Protopsaltis T, Schwab F, Bronsard N, Smith JS, Klineberg E, Mundis G et al (2014) TheT1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96:1631–1640. doi:10.2106/JBJS.M.01459 CrossRefPubMed Protopsaltis T, Schwab F, Bronsard N, Smith JS, Klineberg E, Mundis G et al (2014) TheT1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96:1631–1640. doi:10.​2106/​JBJS.​M.​01459 CrossRefPubMed
Metadata
Title
Asymmetric pedicle subtractionosteotomy (aPSO) guided by a 3D-printed model to correct a combined fixed sagittal and coronal imbalance
Authors
Pierre-Pascal Girod
S. Hartmann
P. Kavakebi
J. Obernauer
M. Verius
C. Thomé
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Neurosurgical Review / Issue 4/2017
Print ISSN: 0344-5607
Electronic ISSN: 1437-2320
DOI
https://doi.org/10.1007/s10143-017-0882-4

Other articles of this Issue 4/2017

Neurosurgical Review 4/2017 Go to the issue