Skip to main content
Top
Published in: Brain Structure and Function 4/2017

01-05-2017 | Original Article

Astrocytic and neuronal localization of kynurenine aminotransferase-2 in the adult mouse brain

Authors: Judit Herédi, Anikó Magyariné Berkó, Ferenc Jankovics, Tokuko Iwamori, Naoki Iwamori, Etsuro Ono, Szatmár Horváth, Zsolt Kis, József Toldi, László Vécsei, Levente Gellért

Published in: Brain Structure and Function | Issue 4/2017

Login to get access

Abstract

During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson’s disease, Huntington’s disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor l-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.
Appendix
Available only for authorised users
Literature
go back to reference Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85:1027–1032CrossRefPubMed Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85:1027–1032CrossRefPubMed
go back to reference Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120CrossRefPubMed Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120CrossRefPubMed
go back to reference Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648CrossRefPubMed Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648CrossRefPubMed
go back to reference Alkondon M, Pereira EF, Todd SW, Randall WR, Lane MV, Albuquerque EX (2015) Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 93:506–518CrossRefPubMed Alkondon M, Pereira EF, Todd SW, Randall WR, Lane MV, Albuquerque EX (2015) Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 93:506–518CrossRefPubMed
go back to reference Ben-Gigi L, Sweetat S, Besser E, Fellig Y, Wiederhold T, Polakiewicz RD, Behar O (2015) Astrogliosis induced by brain injury is regulated by Sema4B phosphorylation(123). eNeuro 2(3). doi:10.1523/ENEURO.0078-14.2015 Ben-Gigi L, Sweetat S, Besser E, Fellig Y, Wiederhold T, Polakiewicz RD, Behar O (2015) Astrogliosis induced by brain injury is regulated by Sema4B phosphorylation(123). eNeuro 2(3). doi:10.​1523/​ENEURO.​0078-14.​2015
go back to reference Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G (2013) GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8:e82180CrossRefPubMedPubMedCentral Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G (2013) GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8:e82180CrossRefPubMedPubMedCentral
go back to reference Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87CrossRefPubMed Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87CrossRefPubMed
go back to reference Cherian AK, Gritton H, Johnson DE, Young D, Kozak R, Sarter M (2014) A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology 82:41–48CrossRefPubMedCentral Cherian AK, Gritton H, Johnson DE, Young D, Kozak R, Sarter M (2014) A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology 82:41–48CrossRefPubMedCentral
go back to reference Dounay AB, Tuttle JB, Verhoest PR (2015) Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem 58:8762–8782CrossRefPubMed Dounay AB, Tuttle JB, Verhoest PR (2015) Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem 58:8762–8782CrossRefPubMed
go back to reference Du F, Schmidt W, Okuno E, Kido R, Kohler C, Schwarcz R (1992) Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 321:477–487CrossRefPubMed Du F, Schmidt W, Okuno E, Kido R, Kohler C, Schwarcz R (1992) Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 321:477–487CrossRefPubMed
go back to reference Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98CrossRefPubMed Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98CrossRefPubMed
go back to reference Gal EM, Sherman AD (1980) l-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res 5:223–239CrossRefPubMed Gal EM, Sherman AD (1980) l-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res 5:223–239CrossRefPubMed
go back to reference Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043PubMed Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043PubMed
go back to reference Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007a) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111CrossRefPubMed Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007a) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111CrossRefPubMed
go back to reference Guidetti P, Hoffman GE, Melendez-Ferro M, Albuquerque EX, Schwarcz R (2007b) Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 55:78–92CrossRefPubMed Guidetti P, Hoffman GE, Melendez-Ferro M, Albuquerque EX, Schwarcz R (2007b) Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 55:78–92CrossRefPubMed
go back to reference Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853CrossRefPubMed Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853CrossRefPubMed
go back to reference Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892CrossRefPubMed Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892CrossRefPubMed
go back to reference Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204–211CrossRefPubMed Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204–211CrossRefPubMed
go back to reference Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500CrossRefPubMedPubMedCentral Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500CrossRefPubMedPubMedCentral
go back to reference Jayawickrama GS, Sadig RR, Sun G, Nematollahi A, Nadvi NA, Hanrahan JR, Gorrell MD, Church WB (2015) Kynurenine aminotransferases and the prospects of inhibitors for the treatment of schizophrenia. Curr Med Chem 22:2902–2918CrossRefPubMed Jayawickrama GS, Sadig RR, Sun G, Nematollahi A, Nadvi NA, Hanrahan JR, Gorrell MD, Church WB (2015) Kynurenine aminotransferases and the prospects of inhibitors for the treatment of schizophrenia. Curr Med Chem 22:2902–2918CrossRefPubMed
go back to reference Kapoor R, Okuno E, Kido R, Kapoor V (1997) Immuno-localization of kynurenine aminotransferase (KAT) in the rat medulla and spinal cord. NeuroReport 8:3619–3623CrossRefPubMed Kapoor R, Okuno E, Kido R, Kapoor V (1997) Immuno-localization of kynurenine aminotransferase (KAT) in the rat medulla and spinal cord. NeuroReport 8:3619–3623CrossRefPubMed
go back to reference Kawai H, Zago W, Berg DK (2002) Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 22:7903–7912PubMed Kawai H, Zago W, Berg DK (2002) Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 22:7903–7912PubMed
go back to reference Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22CrossRefPubMedPubMedCentral Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22CrossRefPubMedPubMedCentral
go back to reference Kindy MS, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Brain Res Mol Brain Res 13:199–206CrossRefPubMed Kindy MS, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Brain Res Mol Brain Res 13:199–206CrossRefPubMed
go back to reference Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA (2014) Reduction of brain kynurenic acid improves cognitive function. J Neurosci 34:10592–10602CrossRefPubMed Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA (2014) Reduction of brain kynurenic acid improves cognitive function. J Neurosci 34:10592–10602CrossRefPubMed
go back to reference Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38:426–432CrossRefPubMed Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38:426–432CrossRefPubMed
go back to reference Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141CrossRefPubMed Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141CrossRefPubMed
go back to reference Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, Bodurka J, Teague TK, Dantzer R, Savitz J (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48CrossRefPubMed Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, Bodurka J, Teague TK, Dantzer R, Savitz J (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48CrossRefPubMed
go back to reference Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706CrossRefPubMed Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706CrossRefPubMed
go back to reference Okuno E, Du F, Ishikawa T, Tsujimoto M, Nakamura M, Schwarcz R, Kido R (1990) Purification and characterization of kynurenine-pyruvate aminotransferase from rat kidney and brain. Brain Res 534:37–44CrossRefPubMed Okuno E, Du F, Ishikawa T, Tsujimoto M, Nakamura M, Schwarcz R, Kido R (1990) Purification and characterization of kynurenine-pyruvate aminotransferase from rat kidney and brain. Brain Res 534:37–44CrossRefPubMed
go back to reference Petralia RS (2012) Distribution of extrasynaptic NMDA receptors on neurons. Sci World J 2012:267120CrossRef Petralia RS (2012) Distribution of extrasynaptic NMDA receptors on neurons. Sci World J 2012:267120CrossRef
go back to reference Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35:1734–1742PubMedPubMedCentral Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35:1734–1742PubMedPubMedCentral
go back to reference Povysheva NV, Johnson JW (2012) Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. J Neurophysiol 107:2232–2243CrossRefPubMedPubMedCentral Povysheva NV, Johnson JW (2012) Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. J Neurophysiol 107:2232–2243CrossRefPubMedPubMedCentral
go back to reference Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:108–112CrossRefPubMed Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:108–112CrossRefPubMed
go back to reference Rejdak R, Zarnowski T, Turski WA, Okuno E, Kocki T, Zagorski Z, Kohler K, Guenther E, Zrenner E (2001) Presence of kynurenic acid and kynurenine aminotransferases in the inner retina. NeuroReport 12:3675–3678CrossRefPubMed Rejdak R, Zarnowski T, Turski WA, Okuno E, Kocki T, Zagorski Z, Kohler K, Guenther E, Zrenner E (2001) Presence of kynurenic acid and kynurenine aminotransferases in the inner retina. NeuroReport 12:3675–3678CrossRefPubMed
go back to reference Riebe I, Seth H, Culley G, Dosa Z, Radi S, Strand K, Frojd V, Hanse E (2016) Tonically active NMDA receptors—a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Eur J Neurosci 43:169–178CrossRefPubMed Riebe I, Seth H, Culley G, Dosa Z, Radi S, Strand K, Frojd V, Hanse E (2016) Tonically active NMDA receptors—a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Eur J Neurosci 43:169–178CrossRefPubMed
go back to reference Roberts RC, Du F, McCarthy KE, Okuno E, Schwarcz R (1992) Immunocytochemical localization of kynurenine aminotransferase in the rat striatum: a light and electron microscopic study. J Comp Neurol 326:82–90CrossRefPubMed Roberts RC, Du F, McCarthy KE, Okuno E, Schwarcz R (1992) Immunocytochemical localization of kynurenine aminotransferase in the rat striatum: a light and electron microscopic study. J Comp Neurol 326:82–90CrossRefPubMed
go back to reference Rzeski W, Kocki T, Dybel A, Wejksza K, Zdzisinska B, Kandefer-Szerszen M, Turski WA, Okuno E, Albrecht J (2005) Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in cultured cerebral cortical neurons. J Neurosci Res 80:677–682CrossRefPubMed Rzeski W, Kocki T, Dybel A, Wejksza K, Zdzisinska B, Kandefer-Szerszen M, Turski WA, Okuno E, Albrecht J (2005) Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in cultured cerebral cortical neurons. J Neurosci Res 80:677–682CrossRefPubMed
go back to reference Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530CrossRefPubMed Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530CrossRefPubMed
go back to reference Speciale C, Hares K, Schwarcz R, Brookes N (1989) High-affinity uptake of l-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 9:2066–2072PubMed Speciale C, Hares K, Schwarcz R, Brookes N (1989) High-affinity uptake of l-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 9:2066–2072PubMed
go back to reference Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623CrossRefPubMed Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623CrossRefPubMed
go back to reference Turski WA, Gramsbergen JB, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to l-kynurenine. J Neurochem 52:1629–1636CrossRefPubMed Turski WA, Gramsbergen JB, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to l-kynurenine. J Neurochem 52:1629–1636CrossRefPubMed
go back to reference Uwai Y, Hara H, Iwamoto K (2013) Transport of kynurenic acid by rat organic anion transporters rOAT1 and rOAT3: species difference between human and rat in OAT1. Int J Tryptophan Res 6:1–6CrossRefPubMedPubMedCentral Uwai Y, Hara H, Iwamoto K (2013) Transport of kynurenic acid by rat organic anion transporters rOAT1 and rOAT3: species difference between human and rat in OAT1. Int J Tryptophan Res 6:1–6CrossRefPubMedPubMedCentral
go back to reference Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82CrossRefPubMed Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82CrossRefPubMed
go back to reference Yu P, Di Prospero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, Du F, Whetsell WO Jr, Guidetti P, Schwarcz R, Tagle DA (2004) Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol 24:6919–6930CrossRefPubMedPubMedCentral Yu P, Di Prospero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, Du F, Whetsell WO Jr, Guidetti P, Schwarcz R, Tagle DA (2004) Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol 24:6919–6930CrossRefPubMedPubMedCentral
go back to reference Zarei MM, Radcliffe KA, Chen D, Patrick JW, Dani JA (1999) Distributions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. Neuroscience 88:755–764CrossRefPubMed Zarei MM, Radcliffe KA, Chen D, Patrick JW, Dani JA (1999) Distributions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. Neuroscience 88:755–764CrossRefPubMed
go back to reference Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP (2009) Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 29:529–538CrossRefPubMed Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP (2009) Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 29:529–538CrossRefPubMed
go back to reference Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874CrossRefPubMedPubMedCentral Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874CrossRefPubMedPubMedCentral
Metadata
Title
Astrocytic and neuronal localization of kynurenine aminotransferase-2 in the adult mouse brain
Authors
Judit Herédi
Anikó Magyariné Berkó
Ferenc Jankovics
Tokuko Iwamori
Naoki Iwamori
Etsuro Ono
Szatmár Horváth
Zsolt Kis
József Toldi
László Vécsei
Levente Gellért
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1299-5

Other articles of this Issue 4/2017

Brain Structure and Function 4/2017 Go to the issue