Skip to main content
Top
Published in: BMC Ophthalmology 1/2015

Open Access 01-12-2015 | Research article

Association between retinal vein occlusion, axial length and vitreous chamber depth measured by optical low coherence reflectometry

Authors: Andrea Szigeti, Miklós Schneider, Mónika Ecsedy, Zoltán Zsolt Nagy, Zsuzsanna Récsán

Published in: BMC Ophthalmology | Issue 1/2015

Login to get access

Abstract

Background

Results of ocular biometric measurements in retinal vein occlusion (RVO) eyes are still inconclusive and controversial. The aim of this study was to evaluate the association between ocular axial length (AL), vitreous chamber depth (VCD) and both central (CRVO) and branch retinal vein occlusions (BRVO) using optical low coherence reflectometry (OLCR).

Methods

Both eyes of 37 patients with unilateral CRVO (mean age: 66 ± 14 years, male:female - 21:16) and 46 patients with unilateral BRVO (mean age: 63 ± 12 years, male:female - 24:22) were enrolled in this study. The control group consisted of randomly selected single eyes of 67 age and gender matched volunteers without the presence or history of RVO (mean age: 64 ± 14 years, male:female - 34:33). Optical biometry was performed by OLCR biometer (LenStar LS 900). Average keratometry readings, central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), AL and VCD of eyes with RVO were compared with those of fellow eyes using paired t-tests and with those of control eyes using independent t-tests.

Results

Mean CCT, ACD and LT, average keratometry readings of affected RVO eyes, unaffected fellow eyes and control eyes was not statistically different in either groups. In eyes with CRVO mean AL and VCD of affected eyes were significantly shorter than those of control eyes (p < 0.001, p < 0.05), mean difference in AL and VCD between the affected and control eyes was 0.56 ± 0.15 mm and 0.45 ± 0.19 mm, respectively. In eyes with BRVO, mean AL of the affected eyes was significantly shorter with a mean difference of 0.57 ± 0.15 mm (p < 0.001) and the VCD was significantly shorter with a mean difference of 0.61 ± 0.15 mm (p < 0.001) comparing with the control eyes.

Conclusion

Shorter AL and VCD might be a potential anatomical predisposing factor for development either of CRVO or BRVO.
Literature
1.
go back to reference Browning DJ. Retinal Vein Occlusion: evidence-based management. New York: Springer Science Buisness Media; 2012. p. 1–157.CrossRef Browning DJ. Retinal Vein Occlusion: evidence-based management. New York: Springer Science Buisness Media; 2012. p. 1–157.CrossRef
2.
go back to reference Klein R, Moss SE, Meuer SM, Klein BE. The 15-year cumulative incidence of retinal vein occlusion: the Beaver Dam Eye Study. Arch Ophthalmol. 2008;126:513–8.CrossRefPubMed Klein R, Moss SE, Meuer SM, Klein BE. The 15-year cumulative incidence of retinal vein occlusion: the Beaver Dam Eye Study. Arch Ophthalmol. 2008;126:513–8.CrossRefPubMed
3.
go back to reference The Eye Disease Case-control Study Group. Risk factors for branch retinal vein occlusion. Am J Ophthalmol. 1993;116:286–96.CrossRef The Eye Disease Case-control Study Group. Risk factors for branch retinal vein occlusion. Am J Ophthalmol. 1993;116:286–96.CrossRef
4.
go back to reference The Eye Disease Case-control Study Group. Risk factors for central retinal vein occlusion. Arch Ophthalmol. 1996;114:545–54.CrossRef The Eye Disease Case-control Study Group. Risk factors for central retinal vein occlusion. Arch Ophthalmol. 1996;114:545–54.CrossRef
5.
go back to reference Hayreh SS, Zimmerman B, McCarthy MJ, Podhajsky P. Systemic diseases associated with various types of retinal vein occlusion. Am J Ophthalmol. 2001;131:61–77.CrossRefPubMed Hayreh SS, Zimmerman B, McCarthy MJ, Podhajsky P. Systemic diseases associated with various types of retinal vein occlusion. Am J Ophthalmol. 2001;131:61–77.CrossRefPubMed
6.
go back to reference Kolar P. Risk Factors for Central and Branch Retinal Vein Occlusion: a meta-analysis of published clinical data. J Ophthalmol. 2014, Article ID 724780, 5 pages. Kolar P. Risk Factors for Central and Branch Retinal Vein Occlusion: a meta-analysis of published clinical data. J Ophthalmol. 2014, Article ID 724780, 5 pages.
7.
go back to reference Majjii AS, Janarthanan M, Naduvilath TJ. Significance of refractive status in branch retinal vein occlusion: a case control study. Retina. 1997;17:200–4. Majjii AS, Janarthanan M, Naduvilath TJ. Significance of refractive status in branch retinal vein occlusion: a case control study. Retina. 1997;17:200–4.
8.
go back to reference Saxena RC, Saxena S, Rajiv N. Hyperopia in branch retinal vein occlusion. Ann Ophthalmol. 1995;27:15–8. Saxena RC, Saxena S, Rajiv N. Hyperopia in branch retinal vein occlusion. Ann Ophthalmol. 1995;27:15–8.
9.
10.
go back to reference Timmerman EA, de Lavalette VW, Van Den Brom HJ. Axial length as a risk factor to branch retinal vein occlusion. Retina. 1997;17:196–9.CrossRefPubMed Timmerman EA, de Lavalette VW, Van Den Brom HJ. Axial length as a risk factor to branch retinal vein occlusion. Retina. 1997;17:196–9.CrossRefPubMed
11.
go back to reference Simons B, Brucker A. Branch retinal vein occlusion: axial length and other risk factors. Retina. 1997;17:191–5.CrossRefPubMed Simons B, Brucker A. Branch retinal vein occlusion: axial length and other risk factors. Retina. 1997;17:191–5.CrossRefPubMed
12.
go back to reference Bandello F, Tavola A, Pierro L, Modorati G, Azzolini C, Brancato R. Axial length and refraction in retinal vein occlusions. Ophthalmologica. 1998;212:133–5.CrossRefPubMed Bandello F, Tavola A, Pierro L, Modorati G, Azzolini C, Brancato R. Axial length and refraction in retinal vein occlusions. Ophthalmologica. 1998;212:133–5.CrossRefPubMed
13.
go back to reference Kir E, Tülin Berk A, Osman Saatci A, Kaynak S, Ergin MH. Axial length and hyperopia in eyes with retinal vein occlusions. Int Ophthalmol. 1997–1998, 21: 209–11. Kir E, Tülin Berk A, Osman Saatci A, Kaynak S, Ergin MH. Axial length and hyperopia in eyes with retinal vein occlusions. Int Ophthalmol. 1997–1998, 21: 209–11.
14.
go back to reference Cekic O, Totan Y, Aydin E, Pehlivan E, Hilmioglu F. The role of axial length in central and branch retinal vein occlusion. Ophthalmic Surg Lasers. 1999;30:523–7.PubMed Cekic O, Totan Y, Aydin E, Pehlivan E, Hilmioglu F. The role of axial length in central and branch retinal vein occlusion. Ophthalmic Surg Lasers. 1999;30:523–7.PubMed
15.
go back to reference Tsai SC, Chen HY, Chen CY. Relationship between retinal vein occlusion and axial length. Kaohsiung J Med Sci. 2003;19:453–7.CrossRefPubMed Tsai SC, Chen HY, Chen CY. Relationship between retinal vein occlusion and axial length. Kaohsiung J Med Sci. 2003;19:453–7.CrossRefPubMed
16.
go back to reference Goldstein M, Leibovitch I, Varssano D, Rothkoff L, Feitt N, Loewensteinet A. Axial length, refractive error, and keratometry in patients with branch retinal vein occlusion. Eur J Ophthalmol. 2004;14:37–9.PubMed Goldstein M, Leibovitch I, Varssano D, Rothkoff L, Feitt N, Loewensteinet A. Axial length, refractive error, and keratometry in patients with branch retinal vein occlusion. Eur J Ophthalmol. 2004;14:37–9.PubMed
17.
go back to reference Mehdizadeh M, Ghassemifar V, Ashraf H, Mehryar M. Relationship between retinal vein occlusion and axial length of the eye. Asian J Ophthalmol. 2005;7:146–8. Mehdizadeh M, Ghassemifar V, Ashraf H, Mehryar M. Relationship between retinal vein occlusion and axial length of the eye. Asian J Ophthalmol. 2005;7:146–8.
18.
go back to reference Brown MM, Brown GC, Menduke H. Central retinal vein obstruction and axial length. Ophthalmic Surg. 1990;21:623–4.PubMed Brown MM, Brown GC, Menduke H. Central retinal vein obstruction and axial length. Ophthalmic Surg. 1990;21:623–4.PubMed
19.
go back to reference Mirshahi A, Moghimi S, Rajai MT. Central retinal vein occlusion: role of axial length. Asian J Ophthalmol. 2005;7:149–51. Mirshahi A, Moghimi S, Rajai MT. Central retinal vein occlusion: role of axial length. Asian J Ophthalmol. 2005;7:149–51.
20.
go back to reference Moghimi S, Mirshahi A, Lasheie A, Maghsoudipour M, Beheshtnejaad A. Biometric indices evaluation in central retinal vein occlusion using partial coherence laser interferometry. Eur J Ophthalmol. 2007;17:383–7.PubMed Moghimi S, Mirshahi A, Lasheie A, Maghsoudipour M, Beheshtnejaad A. Biometric indices evaluation in central retinal vein occlusion using partial coherence laser interferometry. Eur J Ophthalmol. 2007;17:383–7.PubMed
21.
go back to reference Gupta RC, Mengi RK. To study the relationship between the axial length of the eye ball and the retinal vein occlusion. J K Sc. 2010;12:180–3. Gupta RC, Mengi RK. To study the relationship between the axial length of the eye ball and the retinal vein occlusion. J K Sc. 2010;12:180–3.
23.
go back to reference Central Vein Occlusion Study Group. Baseline and early natural history report: the central vein occlusion study. Arch Ophthalmol. 1993;111:1087–95.CrossRef Central Vein Occlusion Study Group. Baseline and early natural history report: the central vein occlusion study. Arch Ophthalmol. 1993;111:1087–95.CrossRef
24.
go back to reference Agarwal A, Agarwal A, Jacob S. Phacoemulsification. 4th ed. India, New Delhi: JP Medical Ltd; 2012. p. 44–6. Agarwal A, Agarwal A, Jacob S. Phacoemulsification. 4th ed. India, New Delhi: JP Medical Ltd; 2012. p. 44–6.
25.
go back to reference Read SA, Colins MJ, Alonso-Caneiro D. Validation of Optical low coherence reflectometry retinal and choroidal biometry. Optom Vis Sci. 2011;88:855–63.CrossRefPubMed Read SA, Colins MJ, Alonso-Caneiro D. Validation of Optical low coherence reflectometry retinal and choroidal biometry. Optom Vis Sci. 2011;88:855–63.CrossRefPubMed
26.
go back to reference Tanna H, Dubis AM, Ayub N, Tait DM, Rha J, Stepien KE. Retinal imaging using commercial broadband optical coherence tomography. Br J Ophthalmol. 2010;94:372–6.CrossRefPubMed Tanna H, Dubis AM, Ayub N, Tait DM, Rha J, Stepien KE. Retinal imaging using commercial broadband optical coherence tomography. Br J Ophthalmol. 2010;94:372–6.CrossRefPubMed
27.
go back to reference Bjeloš RM, Bušić M, Cima I, Kuzmanović EB, Bosnar D, Miletić D. Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation. Graefes Arch Clin Exp Ophthalmol. 2011;249:69–75.CrossRef Bjeloš RM, Bušić M, Cima I, Kuzmanović EB, Bosnar D, Miletić D. Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation. Graefes Arch Clin Exp Ophthalmol. 2011;249:69–75.CrossRef
28.
go back to reference Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Salouti R. Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation. Optometry. 2011;82:140–7.CrossRefPubMed Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Salouti R. Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation. Optometry. 2011;82:140–7.CrossRefPubMed
29.
go back to reference Ueda T, Nawa Y, Hara Y. Relationship between the retinal thickness of the macula and the difference in axial length. Graefes Arch Clin Exp Ophthalmol. 2006;244:498–501.CrossRefPubMed Ueda T, Nawa Y, Hara Y. Relationship between the retinal thickness of the macula and the difference in axial length. Graefes Arch Clin Exp Ophthalmol. 2006;244:498–501.CrossRefPubMed
30.
go back to reference Attas-Fox L, Zadok D, Gerber Y, Morad Y, Eting E, Benamou N, et al. Axial length measurement in eyes with diabetic macular edema: a-scan ultrasound versus IOLMaster. Ophthalmology. 2007;114:1499–504.CrossRefPubMed Attas-Fox L, Zadok D, Gerber Y, Morad Y, Eting E, Benamou N, et al. Axial length measurement in eyes with diabetic macular edema: a-scan ultrasound versus IOLMaster. Ophthalmology. 2007;114:1499–504.CrossRefPubMed
31.
go back to reference Rajan MS, Bunce C, Tuft S. Interocular axial length difference and age-related cataract. J Cataract Refract Surg. 2008;34:76–9.CrossRefPubMed Rajan MS, Bunce C, Tuft S. Interocular axial length difference and age-related cataract. J Cataract Refract Surg. 2008;34:76–9.CrossRefPubMed
32.
go back to reference Jabbour J, Irwig L, Macaskill P, Hennessy MP. Intraocular lens power in bilateral cataract surgery: whether adjusting for error of predicted refraction in the first eye improves prediction in the second eye. J Cataract Refract Surg. 2006;32:2091–7.CrossRefPubMed Jabbour J, Irwig L, Macaskill P, Hennessy MP. Intraocular lens power in bilateral cataract surgery: whether adjusting for error of predicted refraction in the first eye improves prediction in the second eye. J Cataract Refract Surg. 2006;32:2091–7.CrossRefPubMed
33.
go back to reference McIntosh RL, Rogers SL, Lim L, Cheung N, Wang JJ, Mitchell P, et al. Natural history of central retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1113–23.CrossRefPubMed McIntosh RL, Rogers SL, Lim L, Cheung N, Wang JJ, Mitchell P, et al. Natural history of central retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1113–23.CrossRefPubMed
34.
go back to reference Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1094–101.CrossRefPubMed Rogers SL, McIntosh RL, Lim L, Mitchell P, Cheung N, Kowalski JW, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117:1094–101.CrossRefPubMed
35.
go back to reference Green WR, Chan CC, Hutchins GM, Terry JM. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Retina. 1981;1:27–55.PubMed Green WR, Chan CC, Hutchins GM, Terry JM. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Retina. 1981;1:27–55.PubMed
36.
go back to reference Frangieh GT, Green WR, Barraquer-Somers E, Finkelstein D. Histopathologic study of nine branch retinal vein occlusions. Arch Ophthalmol. 1982;100:1132–40.CrossRefPubMed Frangieh GT, Green WR, Barraquer-Somers E, Finkelstein D. Histopathologic study of nine branch retinal vein occlusions. Arch Ophthalmol. 1982;100:1132–40.CrossRefPubMed
37.
go back to reference Ren R, Wang N, Li B, Li L, Gao F, Xu X, et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 2009;50:2175–84.CrossRefPubMed Ren R, Wang N, Li B, Li L, Gao F, Xu X, et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 2009;50:2175–84.CrossRefPubMed
38.
go back to reference Oliveira C, Harizman N, Girkin CA, Xie A, Tello C, Liebmannet JM, et al. Axial length and optic disc size in normal eyes. Br J Ophthalmol. 2007;91:37–9.CrossRefPubMed Oliveira C, Harizman N, Girkin CA, Xie A, Tello C, Liebmannet JM, et al. Axial length and optic disc size in normal eyes. Br J Ophthalmol. 2007;91:37–9.CrossRefPubMed
Metadata
Title
Association between retinal vein occlusion, axial length and vitreous chamber depth measured by optical low coherence reflectometry
Authors
Andrea Szigeti
Miklós Schneider
Mónika Ecsedy
Zoltán Zsolt Nagy
Zsuzsanna Récsán
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2015
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-015-0031-1

Other articles of this Issue 1/2015

BMC Ophthalmology 1/2015 Go to the issue