Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research article

Association between air pollution and mammographic breast density in the Breast Cancer Surveilance Consortium

Authors: Lusine Yaghjyan, Robert Arao, Cole Brokamp, Ellen S. O’Meara, Brian L. Sprague, Gabriela Ghita, Patrick Ryan

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Mammographic breast density is a well-established strong risk factor for breast cancer. The environmental contributors to geographic variation in breast density in urban and rural areas are poorly understood. We examined the association between breast density and exposure to ambient air pollutants (particulate matter <2.5 μm in diameter (PM2.5) and ozone (O3)) in a large population-based screening registry.

Methods

Participants included women undergoing mammography screening at imaging facilities within the Breast Cancer Surveillance Consortium (2001–2009). We included women aged ≥40 years with known residential zip codes before the index mammogram (n = 279,967). Breast density was assessed using the American College of Radiology’s Breast Imaging-Reporting and Data System (BI-RADS) four-category breast density classification. PM2.5 and O3 estimates for grids across the USA (2001–2008) were obtained from the US Environmental Protection Agency Hierarchical Bayesian Model (HBM). For the majority of women (94%), these estimates were available for the year preceding the mammogram date. Association between exposure to air pollutants and density was estimated using polytomous logistic regression, adjusting for potential confounders.

Results

Women with extremely dense breasts had higher mean PM2.5 and lower O3 exposures than women with fatty breasts (8.97 vs. 8.66 ug/m3 and 33.70 vs. 35.82 parts per billion (ppb), respectively). In regression analysis, women with heterogeneously dense vs. scattered fibroglandular breasts were more likely to have higher exposure to PM2.5 (fourth vs. first quartile odds ratio (OR) = 1.19, 95% confidence interval (CI) 1.16 − 1.23). Women with extremely dense vs. scattered fibroglandular breasts were less likely to have higher levels of ozone exposure (fourth vs. first quartile OR = 0.80, 95% CI 0.73–0.87).

Conclusion

Exposure to PM2.5 and O3 may in part explain geographical variation in mammographic density. Further studies are warranted to determine the causal nature of these associations.
Literature
1.
go back to reference McCormack VA, dos Santos SI. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159–69.CrossRefPubMed McCormack VA, dos Santos SI. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1159–69.CrossRefPubMed
3.
go back to reference Perry NM, Allgood PC, Milner SE, Mokbel K, Duffy SW. Mammographic breast density by area of residence: possible evidence of higher density in urban areas. Curr Med Res Opin. 2008;24(2):365–8.CrossRefPubMed Perry NM, Allgood PC, Milner SE, Mokbel K, Duffy SW. Mammographic breast density by area of residence: possible evidence of higher density in urban areas. Curr Med Res Opin. 2008;24(2):365–8.CrossRefPubMed
4.
go back to reference Konarski P, Hałuszka J, Ćwil M. Comparison of urban and rural particulate air pollution characteristics obtained by SIMS and SSMS. Appl Surf Sci. 2006;252(19):7010–3.CrossRef Konarski P, Hałuszka J, Ćwil M. Comparison of urban and rural particulate air pollution characteristics obtained by SIMS and SSMS. Appl Surf Sci. 2006;252(19):7010–3.CrossRef
5.
go back to reference Mendes F, Saiki M, Genezini F, Alves E, Santos J, Martins M, Saldiva P. Comparison between atmospheric pollutants from urban and rural areas employing the transplanted Usnea Amblyoclada lichen species. In: Proceedings of the 2011 International Nuclear Atlantic Conference; 2011 Oct 24-28. Belo Horizonte: ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN; 2011. Mendes F, Saiki M, Genezini F, Alves E, Santos J, Martins M, Saldiva P. Comparison between atmospheric pollutants from urban and rural areas employing the transplanted Usnea Amblyoclada lichen species. In: Proceedings of the 2011 International Nuclear Atlantic Conference; 2011 Oct 24-28. Belo Horizonte: ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN; 2011.
6.
go back to reference Apascaritei M, Popescu F, IONEL H. Air pollution level in urban region of Bucharest and in rural region. In: Proceedings of 11th WSEAS International Conference on Sustainability in Science Engineering. Timisoara; 2009. p. 330–35. Apascaritei M, Popescu F, IONEL H. Air pollution level in urban region of Bucharest and in rural region. In: Proceedings of 11th WSEAS International Conference on Sustainability in Science Engineering. Timisoara; 2009. p. 330–35.
7.
go back to reference Tecer LH, Tagil S. Impact of urbanization on local air quality: differences in urban and rural areas of Balikesir. Turkey CLEAN Soil Air Water. 2014;42(11):1489–99.CrossRef Tecer LH, Tagil S. Impact of urbanization on local air quality: differences in urban and rural areas of Balikesir. Turkey CLEAN Soil Air Water. 2014;42(11):1489–99.CrossRef
8.
go back to reference Kozielska B, Rogula-Kozłowska W, Klejnowski K. Selected organic compounds in fine particulate matter at the regional background, urban background and urban traffic points in Silesia (Poland). Int J Environ Res. 2015;9(2):575–84. Kozielska B, Rogula-Kozłowska W, Klejnowski K. Selected organic compounds in fine particulate matter at the regional background, urban background and urban traffic points in Silesia (Poland). Int J Environ Res. 2015;9(2):575–84.
9.
go back to reference Nair PRA, Sujatha CH. Organic pollutants as endocrine disruptors: organometallics, PAHs, Organochlorine, organophosphate and carbamate insecticides, phthalates, dioxins, phytoestrogens, alkyl phenols and bisphenol A. In: Lichtfouse E, Schwarzbauer J, Robert D, editors. Environmental chemistry for a sustainable world: Volume 1: Nanotechnology and health risk. Dordrecht: Springer Netherlands; 2012. p. 259–309.CrossRef Nair PRA, Sujatha CH. Organic pollutants as endocrine disruptors: organometallics, PAHs, Organochlorine, organophosphate and carbamate insecticides, phthalates, dioxins, phytoestrogens, alkyl phenols and bisphenol A. In: Lichtfouse E, Schwarzbauer J, Robert D, editors. Environmental chemistry for a sustainable world: Volume 1: Nanotechnology and health risk. Dordrecht: Springer Netherlands; 2012. p. 259–309.CrossRef
10.
go back to reference Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut. 2016;213:809–24.CrossRefPubMed Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut. 2016;213:809–24.CrossRefPubMed
11.
go back to reference Swedenborg E, Rüegg J, Mäkelä S, Pongratz I. Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol. 2009;43(1):1–10.CrossRefPubMed Swedenborg E, Rüegg J, Mäkelä S, Pongratz I. Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol. 2009;43(1):1–10.CrossRefPubMed
12.
go back to reference Dyer CA. Heavy metals as endocrine-disrupting chemicals. In: Gore AC, editor. Endocrine-disrupting chemicals: from basic research to clinical practice. Totowa: Humana Pres; 2007. p. 111–33.CrossRef Dyer CA. Heavy metals as endocrine-disrupting chemicals. In: Gore AC, editor. Endocrine-disrupting chemicals: from basic research to clinical practice. Totowa: Humana Pres; 2007. p. 111–33.CrossRef
13.
go back to reference Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2009;12(3):206–23.CrossRefPubMed Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2009;12(3):206–23.CrossRefPubMed
14.
go back to reference Crouse DL, Goldberg MS, Ross NA, Chen H, Labreche F. Postmenopausal breast cancer is associated with exposure to traffic-related air pollution in Montreal, Canada: a case–control study. Environ Health Perspect. 2010;118(11):1578–83.CrossRefPubMedPubMedCentral Crouse DL, Goldberg MS, Ross NA, Chen H, Labreche F. Postmenopausal breast cancer is associated with exposure to traffic-related air pollution in Montreal, Canada: a case–control study. Environ Health Perspect. 2010;118(11):1578–83.CrossRefPubMedPubMedCentral
15.
go back to reference Hystad P, Villeneuve PJ, Goldberg MS, Crouse DL, Johnson K. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–8.CrossRefPubMed Hystad P, Villeneuve PJ, Goldberg MS, Crouse DL, Johnson K. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case–control study. Environ Int. 2015;74:240–8.CrossRefPubMed
16.
go back to reference Parikh PV, Wei Y. PAHs and PM emissions and female breast cancer incidence in metro Atlanta and rural Georgia. Int J Environ Health Res. 2016;26(4):1–9. Parikh PV, Wei Y. PAHs and PM emissions and female breast cancer incidence in metro Atlanta and rural Georgia. Int J Environ Health Res. 2016;26(4):1–9.
17.
go back to reference Wei Y, Davis J, Bina WF. Ambient air pollution is associated with the increased incidence of breast cancer in US. Int J Environ Health Res. 2012;22(1):12–21.CrossRefPubMed Wei Y, Davis J, Bina WF. Ambient air pollution is associated with the increased incidence of breast cancer in US. Int J Environ Health Res. 2012;22(1):12–21.CrossRefPubMed
18.
go back to reference Hung LJ, Chan TF, Wu CH, Chiu HF, Yang CY. Traffic air pollution and risk of death from ovarian cancer in Taiwan: fine particulate matter (PM2.5) as a proxy marker. J Toxicol Environ Health A. 2012;75(3):174–82.CrossRefPubMed Hung LJ, Chan TF, Wu CH, Chiu HF, Yang CY. Traffic air pollution and risk of death from ovarian cancer in Taiwan: fine particulate matter (PM2.5) as a proxy marker. J Toxicol Environ Health A. 2012;75(3):174–82.CrossRefPubMed
19.
go back to reference Reding KW, Young MT, Szpiro AA, Han CJ, DeRoo LA, Weinberg C, Kaufman JD, Sandler DP. Breast cancer risk in relation to ambient air pollution exposure at residences in the Sister Study cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(12):1907–9.CrossRefPubMedPubMedCentral Reding KW, Young MT, Szpiro AA, Han CJ, DeRoo LA, Weinberg C, Kaufman JD, Sandler DP. Breast cancer risk in relation to ambient air pollution exposure at residences in the Sister Study cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(12):1907–9.CrossRefPubMedPubMedCentral
20.
go back to reference Mills PK, Abbey D, Beeson WL, Petersen F. Ambient air pollution and cancer in California Seventh-day Adventists. Arch Environ Health. 1991;46(5):271–80.CrossRefPubMed Mills PK, Abbey D, Beeson WL, Petersen F. Ambient air pollution and cancer in California Seventh-day Adventists. Arch Environ Health. 1991;46(5):271–80.CrossRefPubMed
21.
go back to reference Garcia E, Hurley S, Nelson DO, Hertz A, Reynolds P. Hazardous air pollutants and breast cancer risk in California teachers: a cohort study. Environ Health. 2015;14:14.CrossRefPubMedPubMedCentral Garcia E, Hurley S, Nelson DO, Hertz A, Reynolds P. Hazardous air pollutants and breast cancer risk in California teachers: a cohort study. Environ Health. 2015;14:14.CrossRefPubMedPubMedCentral
22.
go back to reference Liu R, Nelson DO, Hurley S, Hertz A, Reynolds P. Residential exposure to estrogen disrupting hazardous air pollutants and breast cancer risk: the California Teachers Study. Epidemiology. 2015;26(3):365–73.CrossRefPubMedPubMedCentral Liu R, Nelson DO, Hurley S, Hertz A, Reynolds P. Residential exposure to estrogen disrupting hazardous air pollutants and breast cancer risk: the California Teachers Study. Epidemiology. 2015;26(3):365–73.CrossRefPubMedPubMedCentral
23.
go back to reference Huynh S, von Euler-Chelpin M, Raaschou-Nielsen O, Hertel O, Tjønneland A, Lynge E, Vejborg I, Andersen ZJ. Long-term exposure to air pollution and mammographic density in the Danish Diet Cancer and Health cohort. Environ Health. 2015;14(1):1–7.CrossRef Huynh S, von Euler-Chelpin M, Raaschou-Nielsen O, Hertel O, Tjønneland A, Lynge E, Vejborg I, Andersen ZJ. Long-term exposure to air pollution and mammographic density in the Danish Diet Cancer and Health cohort. Environ Health. 2015;14(1):1–7.CrossRef
24.
go back to reference Sprague BL, Gangnon RE, Burt V, Trentham-Dietz A, Hampton JM, Wellman RD, Kerlikowske K, Miglioretti DL. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst. 2014;106(10)dju255-dju255. Sprague BL, Gangnon RE, Burt V, Trentham-Dietz A, Hampton JM, Wellman RD, Kerlikowske K, Miglioretti DL. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst. 2014;106(10)dju255-dju255.
25.
go back to reference Allison KH, Abraham LA, Weaver DL, Tosteson AN, Nelson HD, Onega T, Geller BM, Kerlikowske K, Carney PA, Ichikawa LE, et al. Trends in breast biopsy pathology diagnoses among women undergoing mammography in the United States: a report from the Breast Cancer Surveillance Consortium. Cancer. 2015;121(9):1369–78.CrossRefPubMedPubMedCentral Allison KH, Abraham LA, Weaver DL, Tosteson AN, Nelson HD, Onega T, Geller BM, Kerlikowske K, Carney PA, Ichikawa LE, et al. Trends in breast biopsy pathology diagnoses among women undergoing mammography in the United States: a report from the Breast Cancer Surveillance Consortium. Cancer. 2015;121(9):1369–78.CrossRefPubMedPubMedCentral
26.
go back to reference Harvey JA, Gard CC, Miglioretti DL, Yankaskas BC, Kerlikowske K, Buist DS, Geller BA, Onega TL. Breast Cancer Surveillance Consortium. Reported mammographic density: film-screen versus digital acquisition. Radiology. 2013;266(3):752–8.CrossRefPubMedPubMedCentral Harvey JA, Gard CC, Miglioretti DL, Yankaskas BC, Kerlikowske K, Buist DS, Geller BA, Onega TL. Breast Cancer Surveillance Consortium. Reported mammographic density: film-screen versus digital acquisition. Radiology. 2013;266(3):752–8.CrossRefPubMedPubMedCentral
27.
go back to reference Rowe RW, Tomoda M, Strebel FR, Jenkins GN, Stephens LC, Bull JM. The natural progression of microvasculature in primary tumor and lymph node metastases in a breast carcinoma model: relationship between microvessel density, vascular endothelial growth factor expression, and metastatic invasion. Cancer Biol Ther. 2004;3(4):408–14.CrossRefPubMed Rowe RW, Tomoda M, Strebel FR, Jenkins GN, Stephens LC, Bull JM. The natural progression of microvasculature in primary tumor and lymph node metastases in a breast carcinoma model: relationship between microvessel density, vascular endothelial growth factor expression, and metastatic invasion. Cancer Biol Ther. 2004;3(4):408–14.CrossRefPubMed
28.
go back to reference American College of Radiology. Breast imaging reporting and data system (BI-RADS). 3rd ed. Reston: American College of Radiology; 1998. American College of Radiology. Breast imaging reporting and data system (BI-RADS). 3rd ed. Reston: American College of Radiology; 1998.
29.
go back to reference McMillan NJ, Holland DM, Morara M, Feng J. Combining numerical model output and particulate data using Bayesian space–time modeling. Environ Sci Technol. 2010;21(1):48–65. McMillan NJ, Holland DM, Morara M, Feng J. Combining numerical model output and particulate data using Bayesian space–time modeling. Environ Sci Technol. 2010;21(1):48–65.
30.
go back to reference Gierach GL, Ichikawa L, Kerlikowske K, Brinton LA, Farhat GN, Vacek PM, Weaver DL, Schairer C, Taplin SH, Sherman ME. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012;104(16):1218–27.CrossRefPubMedPubMedCentral Gierach GL, Ichikawa L, Kerlikowske K, Brinton LA, Farhat GN, Vacek PM, Weaver DL, Schairer C, Taplin SH, Sherman ME. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012;104(16):1218–27.CrossRefPubMedPubMedCentral
31.
go back to reference Kerlikowske K, Cook AJ, Buist DS, Cummings SR, Vachon C, Vacek P, Miglioretti DL. Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use. J Clin Oncol. 2010;28(24):3830–7.CrossRefPubMedPubMedCentral Kerlikowske K, Cook AJ, Buist DS, Cummings SR, Vachon C, Vacek P, Miglioretti DL. Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use. J Clin Oncol. 2010;28(24):3830–7.CrossRefPubMedPubMedCentral
32.
go back to reference Vacek PM, Geller BM. A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomarkers Prev. 2004;13(5):715–22.PubMed Vacek PM, Geller BM. A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomarkers Prev. 2004;13(5):715–22.PubMed
33.
go back to reference Kerlikowske K, Ichikawa L, Miglioretti DL, Buist DSM, Vacek PM, Smith-Bindman R, Yankaskas B, Carney PA, Ballard-Barbash R. Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk. J Natl Cancer Inst. 2007;99(5):386–95.CrossRefPubMed Kerlikowske K, Ichikawa L, Miglioretti DL, Buist DSM, Vacek PM, Smith-Bindman R, Yankaskas B, Carney PA, Ballard-Barbash R. Longitudinal measurement of clinical mammographic breast density to improve estimation of breast cancer risk. J Natl Cancer Inst. 2007;99(5):386–95.CrossRefPubMed
34.
go back to reference Qu SX, Stacey NH. Formation and persistence of DNA adducts in different target tissues of rats after multiple administration of benzo[a]pyrene. Carcinogenesis. 1996;17(1):53–9.CrossRefPubMed Qu SX, Stacey NH. Formation and persistence of DNA adducts in different target tissues of rats after multiple administration of benzo[a]pyrene. Carcinogenesis. 1996;17(1):53–9.CrossRefPubMed
36.
go back to reference Pfohl-Leszkowicz A. Chapter 7 Formation, persistence and significance of DNA adduct formation in relation to some pollutants from a broad perspective. In: James CF, editor. Advances in molecular toxicology, vol. 2. Oxford: Elsevier; 2008. p. 183–239. Pfohl-Leszkowicz A. Chapter 7 Formation, persistence and significance of DNA adduct formation in relation to some pollutants from a broad perspective. In: James CF, editor. Advances in molecular toxicology, vol. 2. Oxford: Elsevier; 2008. p. 183–239.
37.
go back to reference Vella RE, Pillon NJ, Zarrouki B, Croze ML, Koppe L, Guichardant M, Pesenti S, Chauvin M-A, Rieusset J, Géloën A, et al. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes. 2015;64(3):1011–24.CrossRefPubMed Vella RE, Pillon NJ, Zarrouki B, Croze ML, Koppe L, Guichardant M, Pesenti S, Chauvin M-A, Rieusset J, Géloën A, et al. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes. 2015;64(3):1011–24.CrossRefPubMed
38.
go back to reference Sunnen G. Ozone in medicine: overview and future directions. J Adv Med. 1988;1:159–74. Sunnen G. Ozone in medicine: overview and future directions. J Adv Med. 1988;1:159–74.
39.
go back to reference Titus-Ernstoff L, Tosteson ANA, Kasales C, Weiss J, Goodrich M, Hatch EE, Carney PA. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control. 2006;17(10):1281–90.CrossRefPubMedPubMedCentral Titus-Ernstoff L, Tosteson ANA, Kasales C, Weiss J, Goodrich M, Hatch EE, Carney PA. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control. 2006;17(10):1281–90.CrossRefPubMedPubMedCentral
40.
go back to reference Yaghjyan L, Colditz GA, Rosner B, Bertrand KA, Tamimi RM. Reproductive factors related to childbearing and mammographic breast density. Breast Cancer Res Treat. 2016;158(2):351–9.CrossRefPubMed Yaghjyan L, Colditz GA, Rosner B, Bertrand KA, Tamimi RM. Reproductive factors related to childbearing and mammographic breast density. Breast Cancer Res Treat. 2016;158(2):351–9.CrossRefPubMed
41.
go back to reference Yaghjyan L, Mahoney MC, Succop P, Wones R, Buckholz J, Pinney SM. Relationship between breast cancer risk factors and mammographic breast density in the Fernald Community Cohort. Br J Cancer. 2012;106(5):996–1003. Yaghjyan L, Mahoney MC, Succop P, Wones R, Buckholz J, Pinney SM. Relationship between breast cancer risk factors and mammographic breast density in the Fernald Community Cohort. Br J Cancer. 2012;106(5):996–1003.
42.
go back to reference Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000;11(7):653–62.CrossRefPubMed Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000;11(7):653–62.CrossRefPubMed
43.
go back to reference Bremnes Y, Ursin G, Bjurstam N, Gram IT. Different measures of smoking exposure and mammographic density in postmenopausal Norwegian women: a cross-sectional study. Breast Cancer Res. 2007;9(5):R73–3.CrossRefPubMedPubMedCentral Bremnes Y, Ursin G, Bjurstam N, Gram IT. Different measures of smoking exposure and mammographic density in postmenopausal Norwegian women: a cross-sectional study. Breast Cancer Res. 2007;9(5):R73–3.CrossRefPubMedPubMedCentral
44.
go back to reference Jacobsen KK, Lynge E, Vejborg I, Tjønneland A, von Euler-Chelpin M, Andersen ZJ. Cigarette smoking and mammographic density in the Danish Diet, Cancer and Health cohort. Cancer Causes Control. 2016;27(2):271–80.CrossRefPubMed Jacobsen KK, Lynge E, Vejborg I, Tjønneland A, von Euler-Chelpin M, Andersen ZJ. Cigarette smoking and mammographic density in the Danish Diet, Cancer and Health cohort. Cancer Causes Control. 2016;27(2):271–80.CrossRefPubMed
45.
go back to reference Modugno F, Ngo DL, Allen GO, Kuller LH, Ness RB, Vogel VG, Costantino JP, Cauley JA. Breast cancer risk factors and mammographic breast density in women over age 70. Breast Cancer Res Treat. 2006;97(2):157–66.CrossRefPubMed Modugno F, Ngo DL, Allen GO, Kuller LH, Ness RB, Vogel VG, Costantino JP, Cauley JA. Breast cancer risk factors and mammographic breast density in women over age 70. Breast Cancer Res Treat. 2006;97(2):157–66.CrossRefPubMed
46.
go back to reference Brand JS, Czene K, Eriksson L, Trinh T, Bhoo-Pathy N, Hall P, Celebioglu F. Influence of lifestyle factors on mammographic density in postmenopausal women. PLoS One. 2013;8(12):e81876.CrossRefPubMedPubMedCentral Brand JS, Czene K, Eriksson L, Trinh T, Bhoo-Pathy N, Hall P, Celebioglu F. Influence of lifestyle factors on mammographic density in postmenopausal women. PLoS One. 2013;8(12):e81876.CrossRefPubMedPubMedCentral
Metadata
Title
Association between air pollution and mammographic breast density in the Breast Cancer Surveilance Consortium
Authors
Lusine Yaghjyan
Robert Arao
Cole Brokamp
Ellen S. O’Meara
Brian L. Sprague
Gabriela Ghita
Patrick Ryan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-017-0828-3

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine