Skip to main content
Top
Published in: Investigational New Drugs 6/2012

01-12-2012 | PRECLINICAL STUDIES

Assessment of the novel tubulin-binding agent EHT 6706 in combination with ionizing radiation or chemotherapy

Authors: Céline Clémenson, Cyrus Chargari, Laurent Désiré, Anne-Sophie Casagrande, Jean Bourhis, Eric Deutsch

Published in: Investigational New Drugs | Issue 6/2012

Login to get access

Summary

The potential of EHT 6706, a novel tubulin-binding agent, was investigated in combination with ionizing radiation (IR) and with conventional cytotoxic chemotherapy agents. Cell proliferation, cell cycle, apoptosis and clonogenic assays were performed in five human cancer cell lines: H460 (non small cell lung carcinoma, NSCLC), HCT116 and HCT116 p53-/- (colorectal cancer), MDA-MB-231 (breast cancer), and MiaPaca2 cells (pancreatic cancer). The drug inhibited cell proliferation in all cell lines. This effect was associated with G2/M arrest and activation of apoptosis in a dose-dependent manner. The drug was then tested in combination with chemotherapy and IR in vitro. Effects on proliferation and clonogenic survival were analyzed. EHT 6706 treatment inhibited clonogenic survival synergistically with IR in H460 and MiaPaca2 cell lines. In the remaining cell lines, the effects of EHT 6706 and IR were additive. For H460 and MiaPaca2 cell lines, the highest effect was seen when cells were exposed for 20 h to EHT 6706 before being irradiated. EHT 6706 also exerted additive inhibition of proliferation when given in combination with conventional chemotherapy agents, such as oxaliplatin, cisplatin and gemcitabine in H460 and MiaPaca2 tumor cell lines. These data show that EHT 6706 could act synergistically with IR and additively with chemotherapy in tumor cell lines in vitro. This provides a good rationale to further assess EHT 6706 in combination protocols and confirm these effects in vivo.
Literature
1.
go back to reference Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRef Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRef
2.
go back to reference Hinnen P, Eskens FA (2007) Vascular disrupting agents in clinical development. Br J Cancer 96(8):1159–1165PubMedCrossRef Hinnen P, Eskens FA (2007) Vascular disrupting agents in clinical development. Br J Cancer 96(8):1159–1165PubMedCrossRef
4.
go back to reference Schnitzer JE (1998) Vascular targeting as a strategy for cancer therapy. N Engl J Med 339(7):472–474PubMedCrossRef Schnitzer JE (1998) Vascular targeting as a strategy for cancer therapy. N Engl J Med 339(7):472–474PubMedCrossRef
5.
go back to reference Griggs J, Metcalfe JC, Hesketh R (2001) Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol 2(2):82–87PubMedCrossRef Griggs J, Metcalfe JC, Hesketh R (2001) Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol 2(2):82–87PubMedCrossRef
6.
go back to reference Cooney MM, Ortiz J, Bukowski RM, Remick SC (2005) Novel vascular targeting/disrupting agents: combretastatin A4 phosphate and related compounds. Curr Oncol Rep 7(2):90–95PubMedCrossRef Cooney MM, Ortiz J, Bukowski RM, Remick SC (2005) Novel vascular targeting/disrupting agents: combretastatin A4 phosphate and related compounds. Curr Oncol Rep 7(2):90–95PubMedCrossRef
7.
go back to reference Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57(10):1829–1834PubMed Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57(10):1829–1834PubMed
8.
go back to reference Shen CH, Shee JJ, Wu JY, Lin YW, Wu JD, Liu YW (2010) Combretastatin A-4 inhibits cell growth and metastasis in bladder cancer cells and retards tumour growth in a murine orthotopic bladder tumour model. Br J Pharmacol 160(8):2008–2027PubMedCrossRef Shen CH, Shee JJ, Wu JY, Lin YW, Wu JD, Liu YW (2010) Combretastatin A-4 inhibits cell growth and metastasis in bladder cancer cells and retards tumour growth in a murine orthotopic bladder tumour model. Br J Pharmacol 160(8):2008–2027PubMedCrossRef
9.
go back to reference Siemann DW, Chaplin DJ, Walicke PA (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 18(2):189–197PubMedCrossRef Siemann DW, Chaplin DJ, Walicke PA (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 18(2):189–197PubMedCrossRef
10.
go back to reference Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S (2005) Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 115(11):2992–3006PubMedCrossRef Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S (2005) Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 115(11):2992–3006PubMedCrossRef
11.
go back to reference Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204PubMedCrossRef Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204PubMedCrossRef
12.
go back to reference Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404PubMedCrossRef Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404PubMedCrossRef
13.
go back to reference Schwartz EL (2009) Antivascular actions of microtubule-binding drugs. Clin Cancer Res 15(8):2594–2601PubMedCrossRef Schwartz EL (2009) Antivascular actions of microtubule-binding drugs. Clin Cancer Res 15(8):2594–2601PubMedCrossRef
14.
go back to reference Tozer GM, Kanthou C, Lewis G, Prise VE, Vojnovic B, Hill SA (2008) Tumour vascular disrupting agents: combating treatment resistance. Br J Radiol 81(Spec No 1):S12–S20PubMedCrossRef Tozer GM, Kanthou C, Lewis G, Prise VE, Vojnovic B, Hill SA (2008) Tumour vascular disrupting agents: combating treatment resistance. Br J Radiol 81(Spec No 1):S12–S20PubMedCrossRef
15.
go back to reference Ng QS, Goh V, Carnell D, Meer K, Padhani AR, Saunders MI, Hoskin PJ (2007) Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67(5):1375–1380PubMedCrossRef Ng QS, Goh V, Carnell D, Meer K, Padhani AR, Saunders MI, Hoskin PJ (2007) Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67(5):1375–1380PubMedCrossRef
16.
go back to reference Ng QS, Mandeville H, Goh V, Alonzi R, Milner J, Carnell D, Meer K, Padhani AR, Saunders MI, Hoskin PJ (2011) Phase Ib trial of radiotherapy in combination with combretastatin-A4-phosphate in patients with non-small-cell lung cancer, prostate adenocarcinoma, and squamous cell carcinoma of the head and neck. Ann Oncol. doi:10.1093/annonc/mdr332 Ng QS, Mandeville H, Goh V, Alonzi R, Milner J, Carnell D, Meer K, Padhani AR, Saunders MI, Hoskin PJ (2011) Phase Ib trial of radiotherapy in combination with combretastatin-A4-phosphate in patients with non-small-cell lung cancer, prostate adenocarcinoma, and squamous cell carcinoma of the head and neck. Ann Oncol. doi:10.​1093/​annonc/​mdr332
17.
go back to reference Levesque AA, Eastman A (2007) p53-based cancer therapies: Is defective p53 the Achilles heel of the tumor? Carcinogenesis 28(1):13–20PubMedCrossRef Levesque AA, Eastman A (2007) p53-based cancer therapies: Is defective p53 the Achilles heel of the tumor? Carcinogenesis 28(1):13–20PubMedCrossRef
18.
go back to reference Akashi Y, Okamoto I, Suzuki M, Tamura K, Iwasa T, Hisada S, Satoh T, Nakagawa K, Ono K, Fukuoka M (2007) The novel microtubule-interfering agent TZT-1027 enhances the anticancer effect of radiation in vitro and in vivo. Br J Cancer 96(10):1532–1539PubMedCrossRef Akashi Y, Okamoto I, Suzuki M, Tamura K, Iwasa T, Hisada S, Satoh T, Nakagawa K, Ono K, Fukuoka M (2007) The novel microtubule-interfering agent TZT-1027 enhances the anticancer effect of radiation in vitro and in vivo. Br J Cancer 96(10):1532–1539PubMedCrossRef
20.
go back to reference Hori K, Furumoto S, Kubota K (2008) Tumor blood flow interruption after radiotherapy strongly inhibits tumor regrowth. Cancer Sci 99(7):1485–1491PubMedCrossRef Hori K, Furumoto S, Kubota K (2008) Tumor blood flow interruption after radiotherapy strongly inhibits tumor regrowth. Cancer Sci 99(7):1485–1491PubMedCrossRef
21.
go back to reference Murata R, Siemann DW, Overgaard J, Horsman MR (2001) Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother Oncol 60(2):155–161PubMedCrossRef Murata R, Siemann DW, Overgaard J, Horsman MR (2001) Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother Oncol 60(2):155–161PubMedCrossRef
22.
go back to reference Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41(1):31–39PubMedCrossRef Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41(1):31–39PubMedCrossRef
23.
go back to reference Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC (2006) Drug insight: vascular disrupting agents and angiogenesis–novel approaches for drug delivery. Nat Clin Pract Oncol 3(12):682–692PubMedCrossRef Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC (2006) Drug insight: vascular disrupting agents and angiogenesis–novel approaches for drug delivery. Nat Clin Pract Oncol 3(12):682–692PubMedCrossRef
24.
go back to reference Hoang T, Huang S, Armstrong E, Eickhoff JC, Harari PM (2006) Augmentation of radiation response with the vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 64(5):1458–1465PubMedCrossRef Hoang T, Huang S, Armstrong E, Eickhoff JC, Harari PM (2006) Augmentation of radiation response with the vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 64(5):1458–1465PubMedCrossRef
25.
go back to reference Tao Y, Leteur C, Yang C, Zhang P, Castedo M, Pierre A, Golsteyn RM, Bourhis J, Kroemer G, Deutsch E (2009) Radiosensitization by Chir-124, a selective CHK1 inhibitor: effects of p53 and cell cycle checkpoints. Cell Cycle 8(8):1196–1205PubMedCrossRef Tao Y, Leteur C, Yang C, Zhang P, Castedo M, Pierre A, Golsteyn RM, Bourhis J, Kroemer G, Deutsch E (2009) Radiosensitization by Chir-124, a selective CHK1 inhibitor: effects of p53 and cell cycle checkpoints. Cell Cycle 8(8):1196–1205PubMedCrossRef
26.
go back to reference Grosios K, Loadman PM, Swaine DJ, Pettit GR, Bibby MC (2000) Combination chemotherapy with combretastatin A-4 phosphate and 5-fluorouracil in an experimental murine colon adenocarcinoma. Anticancer Res 20(1A):229–233PubMed Grosios K, Loadman PM, Swaine DJ, Pettit GR, Bibby MC (2000) Combination chemotherapy with combretastatin A-4 phosphate and 5-fluorouracil in an experimental murine colon adenocarcinoma. Anticancer Res 20(1A):229–233PubMed
27.
go back to reference Rustin GJ, Shreeves G, Nathan PD, Gaya A, Ganesan TS, Wang D, Boxall J, Poupard L, Chaplin DJ, Stratford MR, Balkissoon J, Zweifel M (2010) A Phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Br J Cancer 102(9):1355–1360PubMedCrossRef Rustin GJ, Shreeves G, Nathan PD, Gaya A, Ganesan TS, Wang D, Boxall J, Poupard L, Chaplin DJ, Stratford MR, Balkissoon J, Zweifel M (2010) A Phase Ib trial of CA4P (combretastatin A-4 phosphate), carboplatin, and paclitaxel in patients with advanced cancer. Br J Cancer 102(9):1355–1360PubMedCrossRef
28.
go back to reference Zweifel M, Jayson GC, Reed NS, Osborne R, Hassan B, Ledermann J, Shreeves G, Poupard L, Lu SP, Balkissoon J, Chaplin DJ, Rustin GJ (2011) Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Ann Oncol 22(9):2036–2041PubMedCrossRef Zweifel M, Jayson GC, Reed NS, Osborne R, Hassan B, Ledermann J, Shreeves G, Poupard L, Lu SP, Balkissoon J, Chaplin DJ, Rustin GJ (2011) Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Ann Oncol 22(9):2036–2041PubMedCrossRef
Metadata
Title
Assessment of the novel tubulin-binding agent EHT 6706 in combination with ionizing radiation or chemotherapy
Authors
Céline Clémenson
Cyrus Chargari
Laurent Désiré
Anne-Sophie Casagrande
Jean Bourhis
Eric Deutsch
Publication date
01-12-2012
Publisher
Springer US
Published in
Investigational New Drugs / Issue 6/2012
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-011-9785-3

Other articles of this Issue 6/2012

Investigational New Drugs 6/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine