Skip to main content
Top
Published in: NeuroMolecular Medicine 2-3/2017

01-09-2017 | Original Paper

Assessment of the Neuroprotective Effects of Arginine-Rich Protamine Peptides, Poly-Arginine Peptides (R12-Cyclic, R22) and Arginine–Tryptophan-Containing Peptides Following In Vitro Excitotoxicity and/or Permanent Middle Cerebral Artery Occlusion in Rats

Authors: Bruno P. Meloni, Diego Milani, Jane L. Cross, Vince W. Clark, Adam B. Edwards, Ryan S. Anderton, David J. Blacker, Neville W. Knuckey

Published in: NeuroMolecular Medicine | Issue 2-3/2017

Login to get access

Abstract

We have demonstrated that arginine-rich and poly-arginine peptides possess potent neuroprotective properties with arginine content and peptide positive charge being particularly critical for neuroprotective efficacy. In addition, the presence of other amino acids within arginine-rich peptides, as well as chemical modifications, peptide length and cell-penetrating properties also influence the level of neuroprotection. Against this background, we have examined the neuroprotective efficacy of arginine-rich protamine peptides, a cyclic (R12-c) poly-arginine peptide and a R22 poly-arginine peptide, as well as arginine peptides containing tryptophan or other amino acids (phenylalanine, tyrosine, glycine or leucine) in in vitro glutamic acid excitotoxicity and in vivo rat permanent middle cerebral artery occlusion models of stroke. In vitro studies demonstrated that protamine and poly-arginine peptides (R12-c, R22) were neuroprotective. Arginine–tryptophan-containing peptides were highly neuroprotective, with R12W8a being the most potent arginine-rich peptide identified in our laboratory. Peptides containing phenylalanine or tyrosine substituted in place of tryptophan in R12W8a were also highly neuroprotective, whereas leucine, and in particular glycine substitutions, decreased peptide efficacy. In vivo studies with protamine administered intravenously at 1000 nmol/kg 30 min after MCAO significantly reduced infarct volume and cerebral oedema by 22.5 and 38.6%, respectively. The R12W8a peptide was highly toxic when administered intravenously at 300 or 100 nmol/kg and ineffective at reducing infarct volume when administered at 30 nmol/kg 30 min after MCAO, unlike R18 (30 nmol/kg), which significantly reduced infarct volume by 20.4%. However, both R12W8a and R18 significantly reduced cerebral oedema by 19.8 and 42.2%, respectively. Protamine, R12W8a and R18 also reduced neuronal glutamic acid-induced calcium influx. These findings further highlight the neuroprotective properties of arginine-rich peptides and support the view that they represent a new class of neuroprotective agent.
Literature
go back to reference Bechara, C., Pallerla, M., Burlina, F., Illien, F., Cribier, S., & Sagan, S. (2015). Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cellular and Molecular Life Sciences, 72(4), 809–820.CrossRefPubMed Bechara, C., Pallerla, M., Burlina, F., Illien, F., Cribier, S., & Sagan, S. (2015). Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cellular and Molecular Life Sciences, 72(4), 809–820.CrossRefPubMed
go back to reference Bechara, C., Pallerla, M., Zaltsman, Y., Burlina, F., Alves, I. D., Lequin, O., et al. (2013). Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. FASEB Journal, 27(2), 738–749.CrossRefPubMed Bechara, C., Pallerla, M., Zaltsman, Y., Burlina, F., Alves, I. D., Lequin, O., et al. (2013). Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. FASEB Journal, 27(2), 738–749.CrossRefPubMed
go back to reference Brittain, J. M., Chen, L., Wilson, S. M., Brustovetsky, T., Gao, X., Ashpole, N. M., et al. (2011). Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). Journal of Biological Chemistry, 286(43), 37778–37792.CrossRefPubMedPubMedCentral Brittain, J. M., Chen, L., Wilson, S. M., Brustovetsky, T., Gao, X., Ashpole, N. M., et al. (2011). Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). Journal of Biological Chemistry, 286(43), 37778–37792.CrossRefPubMedPubMedCentral
go back to reference Brustovetsky, T., Pellman, J. J., Yang, X. F., Khanna, R., & Brustovetsky, N. (2014). Collapsin response mediator protein 2 (CRMP2) interacts with N-methyl-D-aspartate (NMDA) receptor and Na+/Ca2+ exchanger and regulates their functional activity. Journal of Biological Chemistry, 289(11), 7470–7482.CrossRefPubMedPubMedCentral Brustovetsky, T., Pellman, J. J., Yang, X. F., Khanna, R., & Brustovetsky, N. (2014). Collapsin response mediator protein 2 (CRMP2) interacts with N-methyl-D-aspartate (NMDA) receptor and Na+/Ca2+ exchanger and regulates their functional activity. Journal of Biological Chemistry, 289(11), 7470–7482.CrossRefPubMedPubMedCentral
go back to reference Byun, Y., Singh, V. K., & Yang, V. C. (1999). Low molecular weight protamine: A potential nontoxic heparin antagonist. Thrombosis Research, 94(1), 53–61.CrossRefPubMed Byun, Y., Singh, V. K., & Yang, V. C. (1999). Low molecular weight protamine: A potential nontoxic heparin antagonist. Thrombosis Research, 94(1), 53–61.CrossRefPubMed
go back to reference Campbell, K., Meloni, B. P., & Knuckey, N. W. (2008). Combined magnesium and mild hypothermia (35°C) treatment reduces infarct volumes after permanent middle cerebral artery occlusion in the rat at 2 and 4, but not 6 hours. Brain Research, 1230, 258–264.CrossRefPubMed Campbell, K., Meloni, B. P., & Knuckey, N. W. (2008). Combined magnesium and mild hypothermia (35°C) treatment reduces infarct volumes after permanent middle cerebral artery occlusion in the rat at 2 and 4, but not 6 hours. Brain Research, 1230, 258–264.CrossRefPubMed
go back to reference DeLucia, A., 3rd, Wakefield, T. W., Andrews, P. C., Nichol, B. J., Kadell, A. M., Wrobleski, S. K., et al. (1993). Efficacy and toxicity of differently charged polycationic protamine-like peptides for heparin anticoagulation reversal. Journal of Vascular Surgery, 18(1), 49–58.CrossRefPubMed DeLucia, A., 3rd, Wakefield, T. W., Andrews, P. C., Nichol, B. J., Kadell, A. M., Wrobleski, S. K., et al. (1993). Efficacy and toxicity of differently charged polycationic protamine-like peptides for heparin anticoagulation reversal. Journal of Vascular Surgery, 18(1), 49–58.CrossRefPubMed
go back to reference Ferrer-Montiel, A. V., Merino, J. M., Blondelle, S. E., Perez-Paya, E., Houghten, R. A., & Montal, M. (1998). Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death. Nature Biotechnology, 16(3), 286–291.CrossRefPubMed Ferrer-Montiel, A. V., Merino, J. M., Blondelle, S. E., Perez-Paya, E., Houghten, R. A., & Montal, M. (1998). Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death. Nature Biotechnology, 16(3), 286–291.CrossRefPubMed
go back to reference Fotin-Mleczek, M., Welte, S., Mader, O., Duchardt, F., Fischer, R., Hufnagel, H., et al. (2005). Cationic cell-penetrating peptides interfere with TNF signalling by induction of TNF receptor internalization. Journal of Cell Science, 118(Pt 15), 3339–3351.CrossRefPubMed Fotin-Mleczek, M., Welte, S., Mader, O., Duchardt, F., Fischer, R., Hufnagel, H., et al. (2005). Cationic cell-penetrating peptides interfere with TNF signalling by induction of TNF receptor internalization. Journal of Cell Science, 118(Pt 15), 3339–3351.CrossRefPubMed
go back to reference He, H., Ye, J., Liu, E., Liang, Q., Liu, Q., & Yang, V. C. (2014). Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. Journal of Controlled Release, 193, 63–73.CrossRefPubMed He, H., Ye, J., Liu, E., Liang, Q., Liu, Q., & Yang, V. C. (2014). Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. Journal of Controlled Release, 193, 63–73.CrossRefPubMed
go back to reference Henninger, N., & Fisher, M. (2016). Extending the time window for endovascular and pharmacological reperfusion. Translational Stroke Research, 7(4), 284–293.CrossRefPubMed Henninger, N., & Fisher, M. (2016). Extending the time window for endovascular and pharmacological reperfusion. Translational Stroke Research, 7(4), 284–293.CrossRefPubMed
go back to reference Hoffmann, J. A., Chance, R. E., & Johnson, M. G. (1990). Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using high-performance liquid chromatography. Protein Expression and Purification, 1(2), 127–133.CrossRefPubMed Hoffmann, J. A., Chance, R. E., & Johnson, M. G. (1990). Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using high-performance liquid chromatography. Protein Expression and Purification, 1(2), 127–133.CrossRefPubMed
go back to reference Hoque, A., Hossain, M. I., Ameen, S. S., Ang, C. S., Williamson, N., Ng, D. C., et al. (2016). A beacon of hope in stroke therapy—Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacology and Therapeutics, 160, 159–179.CrossRefPubMed Hoque, A., Hossain, M. I., Ameen, S. S., Ang, C. S., Williamson, N., Ng, D. C., et al. (2016). A beacon of hope in stroke therapy—Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacology and Therapeutics, 160, 159–179.CrossRefPubMed
go back to reference Horrow, J. C. (1985). Protamine: A review of its toxicity. Anesthesia and Analgesia, 64(3), 348–361.CrossRefPubMed Horrow, J. C. (1985). Protamine: A review of its toxicity. Anesthesia and Analgesia, 64(3), 348–361.CrossRefPubMed
go back to reference Jobin, M. L., Blanchet, M., Henry, S., Chaignepain, S., Manigand, C., Castano, S., et al. (2015). The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochimica et Biophysica Acta, 1848(2), 593–602.CrossRefPubMed Jobin, M. L., Blanchet, M., Henry, S., Chaignepain, S., Manigand, C., Castano, S., et al. (2015). The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochimica et Biophysica Acta, 1848(2), 593–602.CrossRefPubMed
go back to reference Koulen, P., & Ehrlich, B. E. (2000). Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote. Molecular Biology of the Cell, 11(7), 2213–2219.CrossRefPubMedPubMedCentral Koulen, P., & Ehrlich, B. E. (2000). Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote. Molecular Biology of the Cell, 11(7), 2213–2219.CrossRefPubMedPubMedCentral
go back to reference Li, T., Meng, Z., Zhu, X., Gan, H., Gu, R., Wu, Z., et al. (2015). New synthetic peptide with efficacy for heparin reversal and low toxicity and immunogenicity in comparison to protamine sulfate. Biochemical and Biophysical Research Communications, 467(3), 497–502.CrossRefPubMed Li, T., Meng, Z., Zhu, X., Gan, H., Gu, R., Wu, Z., et al. (2015). New synthetic peptide with efficacy for heparin reversal and low toxicity and immunogenicity in comparison to protamine sulfate. Biochemical and Biophysical Research Communications, 467(3), 497–502.CrossRefPubMed
go back to reference MacDougall, G., Anderton, R. S., Edwards, A. B., Knuckey, N. W., & Meloni, B. P. (2017). The neuroprotective peptide poly-arginine-12 (R12) reduces cell surface levels of NMDA NR2B receptor subunit in cortical neurons; investigation into the involvement of endocytic mechanisms. Journal of Molecular Neuroscience, 61, 235–246.CrossRefPubMed MacDougall, G., Anderton, R. S., Edwards, A. B., Knuckey, N. W., & Meloni, B. P. (2017). The neuroprotective peptide poly-arginine-12 (R12) reduces cell surface levels of NMDA NR2B receptor subunit in cortical neurons; investigation into the involvement of endocytic mechanisms. Journal of Molecular Neuroscience, 61, 235–246.CrossRefPubMed
go back to reference Marshall, J., Wong, K. Y., Rupasinghe, C. N., Tiwari, R., Zhao, X., Berberoglu, E. D., et al. (2015). Inhibition of N-methyl-D-aspartate-induced retinal neuronal death by polyarginine peptides is linked to the attenuation of stress-induced hyperpolarization of the inner mitochondrial membrane potential. Journal of Biological Chemistry, 290(36), 22030–22048.CrossRefPubMedPubMedCentral Marshall, J., Wong, K. Y., Rupasinghe, C. N., Tiwari, R., Zhao, X., Berberoglu, E. D., et al. (2015). Inhibition of N-methyl-D-aspartate-induced retinal neuronal death by polyarginine peptides is linked to the attenuation of stress-induced hyperpolarization of the inner mitochondrial membrane potential. Journal of Biological Chemistry, 290(36), 22030–22048.CrossRefPubMedPubMedCentral
go back to reference Matsunaga, M., Ohtaki, H., Takaki, A., Iwai, Y., Yin, L., Mizuguchi, H., et al. (2003). Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neuroscience Research, 47(3), 269–276.CrossRefPubMed Matsunaga, M., Ohtaki, H., Takaki, A., Iwai, Y., Yin, L., Mizuguchi, H., et al. (2003). Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neuroscience Research, 47(3), 269–276.CrossRefPubMed
go back to reference Mehta, C. R., & Patel, N. R. (2006). Adaptive, group sequential and decision theoretic approaches to sample size determination. Statistics in Medicine, 25(19), 3250–3269.CrossRefPubMed Mehta, C. R., & Patel, N. R. (2006). Adaptive, group sequential and decision theoretic approaches to sample size determination. Statistics in Medicine, 25(19), 3250–3269.CrossRefPubMed
go back to reference Meloni, B. P., Brookes, L. M., Clark, V. W., Cross, J. L., Edwards, A. B., Anderton, R. S., et al. (2015a). Poly-arginine and arginine-rich peptides are neuroprotective in stroke models. Journal of Cerebral Blood Flow and Metabolism, 35(6), 993–1004.CrossRefPubMedPubMedCentral Meloni, B. P., Brookes, L. M., Clark, V. W., Cross, J. L., Edwards, A. B., Anderton, R. S., et al. (2015a). Poly-arginine and arginine-rich peptides are neuroprotective in stroke models. Journal of Cerebral Blood Flow and Metabolism, 35(6), 993–1004.CrossRefPubMedPubMedCentral
go back to reference Meloni, B. P., Craig, A. J., Milech, N., Hopkins, R. M., Watt, P. M., & Knuckey, N. W. (2014). The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cellular and Molecular Neurobiology, 34(2), 173–181.CrossRefPubMed Meloni, B. P., Craig, A. J., Milech, N., Hopkins, R. M., Watt, P. M., & Knuckey, N. W. (2014). The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cellular and Molecular Neurobiology, 34(2), 173–181.CrossRefPubMed
go back to reference Meloni, B. P., Milani, D., Edwards, A. B., Anderton, R. S., O’Hare, Doig R. L., Fitzgerald, M., et al. (2015b). Neuroprotective peptides fused to arginine-rich cell penetrating peptides: Neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacology and Therapeutics, 153, 36–54.CrossRefPubMed Meloni, B. P., Milani, D., Edwards, A. B., Anderton, R. S., O’Hare, Doig R. L., Fitzgerald, M., et al. (2015b). Neuroprotective peptides fused to arginine-rich cell penetrating peptides: Neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacology and Therapeutics, 153, 36–54.CrossRefPubMed
go back to reference Milani, D., Clark, V. W., Cross, J. L., Anderton, R. S., Knuckey, N. W., & Meloni, B. P. (2016a). Poly-arginine peptides reduce infarct volume in a permanent middle cerebral artery rat stroke model. BMC Neuroscience, 17(1), 1–8.CrossRef Milani, D., Clark, V. W., Cross, J. L., Anderton, R. S., Knuckey, N. W., & Meloni, B. P. (2016a). Poly-arginine peptides reduce infarct volume in a permanent middle cerebral artery rat stroke model. BMC Neuroscience, 17(1), 1–8.CrossRef
go back to reference Milani, D., Cross, J. L., Knuckey, N. W., Blacker, D. J., Anderton, R. S., & Meloni, B. P. (2017). Neuroprotective efficacy of R18 poly-arginine and NA-1 (TAT-NR2B9c) peptides following transient middle cerebral artery occlusion in the rat. Neuroscience Research, 114, 9–15.CrossRefPubMed Milani, D., Cross, J. L., Knuckey, N. W., Blacker, D. J., Anderton, R. S., & Meloni, B. P. (2017). Neuroprotective efficacy of R18 poly-arginine and NA-1 (TAT-NR2B9c) peptides following transient middle cerebral artery occlusion in the rat. Neuroscience Research, 114, 9–15.CrossRefPubMed
go back to reference Milani, D., Knuckey, N. W., Anderton, R. S., Cross, J. L., & Meloni, B. P. (2016b). The R18 poly-arginine peptide is more effective than the TAT–NR2B9c (NA-1) peptide when administered 60 minutes after permanent middle cerebral artery occlusion in the rat. Stroke Research and Treatment, 2016, 1–9.CrossRef Milani, D., Knuckey, N. W., Anderton, R. S., Cross, J. L., & Meloni, B. P. (2016b). The R18 poly-arginine peptide is more effective than the TAT–NR2B9c (NA-1) peptide when administered 60 minutes after permanent middle cerebral artery occlusion in the rat. Stroke Research and Treatment, 2016, 1–9.CrossRef
go back to reference Mitchell, D. J., Kim, D. T., Steinman, L., Fathman, C. G., & Rothbard, J. B. (2000). Polyarginine enters cells more efficiently than other polycationic homopolymers. Journal of Peptide Research, 56(5), 318–325.CrossRefPubMed Mitchell, D. J., Kim, D. T., Steinman, L., Fathman, C. G., & Rothbard, J. B. (2000). Polyarginine enters cells more efficiently than other polycationic homopolymers. Journal of Peptide Research, 56(5), 318–325.CrossRefPubMed
go back to reference Moutal, A., Francois-Moutal, L., Brittain, J. M., Khanna, M., & Khanna, R. (2014). Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Frontiers in Cellular Neuroscience. doi:10.3389/fncel.2014.00471.PubMedCentral Moutal, A., Francois-Moutal, L., Brittain, J. M., Khanna, M., & Khanna, R. (2014). Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Frontiers in Cellular Neuroscience. doi:10.​3389/​fncel.​2014.​00471.PubMedCentral
go back to reference Oh, D., Nasrolahi Shirazi, A., Northup, K., Sullivan, B., Tiwari, R. K., Bisoffi, M., et al. (2014). Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization. Molecular Pharmacology, 11(8), 2845–2854.CrossRef Oh, D., Nasrolahi Shirazi, A., Northup, K., Sullivan, B., Tiwari, R. K., Bisoffi, M., et al. (2014). Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization. Molecular Pharmacology, 11(8), 2845–2854.CrossRef
go back to reference Pevni, D., Gurevich, J., Frolkis, I., Keren, G., Shapira, I., Paz, J., et al. (2000). Protamine induces vasorelaxation of human internal thoracic artery by endothelial NO-synthase pathway. Annals of Thoracic Surgery, 70(6), 2050–2053.CrossRefPubMed Pevni, D., Gurevich, J., Frolkis, I., Keren, G., Shapira, I., Paz, J., et al. (2000). Protamine induces vasorelaxation of human internal thoracic artery by endothelial NO-synthase pathway. Annals of Thoracic Surgery, 70(6), 2050–2053.CrossRefPubMed
go back to reference Qian, Z., Martyna, A., Hard, R. L., Wang, J., Appiah-Kubi, G., Coss, C., et al. (2016). discovery and mechanism of highly efficient cyclic cell-penetrating peptides. Biochemistry, 55(18), 2601–2612.CrossRefPubMed Qian, Z., Martyna, A., Hard, R. L., Wang, J., Appiah-Kubi, G., Coss, C., et al. (2016). discovery and mechanism of highly efficient cyclic cell-penetrating peptides. Biochemistry, 55(18), 2601–2612.CrossRefPubMed
go back to reference Raikar, G. V., Hisamochi, K., Raikar, B. L., & Schaff, H. V. (1996). Nitric oxide inhibition attenuates systemic hypotension produced by protamine. Journal of Thoracic and Cardiovascular Surgery, 111(6), 1240–1247.CrossRefPubMed Raikar, G. V., Hisamochi, K., Raikar, B. L., & Schaff, H. V. (1996). Nitric oxide inhibition attenuates systemic hypotension produced by protamine. Journal of Thoracic and Cardiovascular Surgery, 111(6), 1240–1247.CrossRefPubMed
go back to reference Ruiz, A., Matute, C., & Alberdi, E. (2009). Endoplasmic reticulum Ca2+ release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity. Cell Calcium, 46(4), 273–281.CrossRefPubMed Ruiz, A., Matute, C., & Alberdi, E. (2009). Endoplasmic reticulum Ca2+ release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity. Cell Calcium, 46(4), 273–281.CrossRefPubMed
go back to reference Rydberg, H. A., Matson, M., Amand, H. L., Esbjörner, E. K., & Nordén, B. (2012). Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry, 51(27), 5531–5539.CrossRefPubMed Rydberg, H. A., Matson, M., Amand, H. L., Esbjörner, E. K., & Nordén, B. (2012). Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry, 51(27), 5531–5539.CrossRefPubMed
go back to reference Starbuck, W. C., Seibert, R. A., Schwartz, A., Mauritzen, C., Taylor, C. W., & Busch, H. (1967). Studies on the pharmacology and toxicology of histones. Archives Internationales de Pharmacodynamie et de Thérapie, 165(2), 374–383.PubMed Starbuck, W. C., Seibert, R. A., Schwartz, A., Mauritzen, C., Taylor, C. W., & Busch, H. (1967). Studies on the pharmacology and toxicology of histones. Archives Internationales de Pharmacodynamie et de Thérapie, 165(2), 374–383.PubMed
go back to reference Traboulsi, H., Larkin, H., Bonin, M. A., Volkov, L., Lavoie, C. L., & Marsault, É. (2015). Macrocyclic cell penetrating peptides: A study of structure-penetration properties. Bioconjugate Chemistry, 26(3), 405–411.CrossRefPubMed Traboulsi, H., Larkin, H., Bonin, M. A., Volkov, L., Lavoie, C. L., & Marsault, É. (2015). Macrocyclic cell penetrating peptides: A study of structure-penetration properties. Bioconjugate Chemistry, 26(3), 405–411.CrossRefPubMed
go back to reference Tu, W., Xu, X., Peng, L., Zhong, X., Zhang, W., Soundarapandian, M. M., et al. (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 140(2), 222–234.CrossRefPubMedPubMedCentral Tu, W., Xu, X., Peng, L., Zhong, X., Zhang, W., Soundarapandian, M. M., et al. (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 140(2), 222–234.CrossRefPubMedPubMedCentral
go back to reference Tymianski, M. (2014). Stroke in 2013: Disappointments and advances in acute stroke intervention. Nature Reviews Neurology, 10(2), 66–68.CrossRefPubMed Tymianski, M. (2014). Stroke in 2013: Disappointments and advances in acute stroke intervention. Nature Reviews Neurology, 10(2), 66–68.CrossRefPubMed
go back to reference Walrant, A., Vogel, A., Correia, I., Lequin, O., Olausson, B. E., Desbat, B., et al. (2012). Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochimica et Biophysica Acta, 1818(7), 1755–1763.CrossRefPubMed Walrant, A., Vogel, A., Correia, I., Lequin, O., Olausson, B. E., Desbat, B., et al. (2012). Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochimica et Biophysica Acta, 1818(7), 1755–1763.CrossRefPubMed
Metadata
Title
Assessment of the Neuroprotective Effects of Arginine-Rich Protamine Peptides, Poly-Arginine Peptides (R12-Cyclic, R22) and Arginine–Tryptophan-Containing Peptides Following In Vitro Excitotoxicity and/or Permanent Middle Cerebral Artery Occlusion in Rats
Authors
Bruno P. Meloni
Diego Milani
Jane L. Cross
Vince W. Clark
Adam B. Edwards
Ryan S. Anderton
David J. Blacker
Neville W. Knuckey
Publication date
01-09-2017
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2-3/2017
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8441-2

Other articles of this Issue 2-3/2017

NeuroMolecular Medicine 2-3/2017 Go to the issue