Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2008

Open Access 01-12-2008 | Research

Assessment of the centre of pressure pattern and moments about S2 in scoliotic subjects during normal walking

Authors: Nachiappan Chockalingam, Surendra Bandi, Aziz Rahmatalla, Peter H Dangerfield, El-Nasri Ahmed

Published in: Scoliosis and Spinal Disorders | Issue 1/2008

Login to get access

Abstract

Background Context

Research employing gait measurements indicate asymmetries in ground reaction forces and suggest relationships between these asymmetries, neurological dysfunction and spinal deformity. Although, studies have documented the use of centre of pressure (CoP) and net joint moments in gait assessment and have assessed centre of mass (CoM)-CoP distance relationships in clinical conditions, there is a paucity of information relating to the moments about CoM. It is commonly considered that CoM is situated around S2 vertebra in normal upright posture and hence this study uses S2 vertebral prominence as reference point relative to CoM.

Purpose

To assess and establish asymmetry in the CoP pattern and moments about S2 vertebral prominence during level walking and its relationship to spinal deformity in adolescents with scoliosis.

Patient sample

Nine Adolescent Idiopathic Scoliosis subjects (8 females and 1 male with varying curve magnitudes and laterality) scheduled for surgery within 2–3 days after data collection, took part in this study.

Outcome measures

Kinetic and Kinematic Gait assessment was performed with an aim to estimate the CoP displacement and the moments generated by the ground reaction force about the S2 vertebral prominence during left and right stance during normal walking.

Methods

The study employed a strain gauge force platform to estimate the medio-lateral and anterior-posterior displacement of COP and a six camera motion analysis system to track the reflective markers to assess the kinematics. The data were recorded simultaneously.

Results

Results indicate wide variations in the medio lateral direction CoP, which could be related to the laterality of both the main and compensation curves. This variation is not evident in the anterior-posterior direction. Similar results were recorded for moments about S2 vertebral prominence. Subjects with higher left compensation curve had greater displacement to the left.

Conclusion

Although further longitudinal studies are needed, results indicate that the variables identified in this study are applicable to initial screening and surgical evaluation of scoliosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Winter DA: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 1991, Waterloo: UW Press, 2 Winter DA: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 1991, Waterloo: UW Press, 2
2.
go back to reference Winter DA: Human balance and posture control during standing and walking. Gait and Posture. 1995, 3: 193-214. 10.1016/0966-6362(96)82849-9.CrossRef Winter DA: Human balance and posture control during standing and walking. Gait and Posture. 1995, 3: 193-214. 10.1016/0966-6362(96)82849-9.CrossRef
3.
go back to reference Carpenter MG, Frank JS, Winter DA, Peysar GW: Sampling Duration effects on Centre of Pressure Summary Measures. Gait and Posture. 2001, 13: 33-40. 10.1016/S0966-6362(00)00093-X.CrossRef Carpenter MG, Frank JS, Winter DA, Peysar GW: Sampling Duration effects on Centre of Pressure Summary Measures. Gait and Posture. 2001, 13: 33-40. 10.1016/S0966-6362(00)00093-X.CrossRef
4.
go back to reference Karlsson A, Frykberg G: Correlations between force plate measures for assessment of balance. Clinical Biomechanics. 2000, 15 (5): 365-369. 10.1016/S0268-0033(99)00096-0.CrossRefPubMed Karlsson A, Frykberg G: Correlations between force plate measures for assessment of balance. Clinical Biomechanics. 2000, 15 (5): 365-369. 10.1016/S0268-0033(99)00096-0.CrossRefPubMed
5.
go back to reference Onell A: The Vertical Ground Reaction Force for Analysis of Balance?. Gait and Posture. 2000, 12: 7-13. 10.1016/S0966-6362(00)00053-9.CrossRefPubMed Onell A: The Vertical Ground Reaction Force for Analysis of Balance?. Gait and Posture. 2000, 12: 7-13. 10.1016/S0966-6362(00)00053-9.CrossRefPubMed
6.
go back to reference Sakaguchi M, Taguchi K, Miyashita Y, Katsuno S: Changes with aging in head and centre of foot pressure sway in children. International journal of Paediatric Otorhinolaryngogly. 1994, 29: 101-109. 10.1016/0165-5876(94)90089-2.CrossRef Sakaguchi M, Taguchi K, Miyashita Y, Katsuno S: Changes with aging in head and centre of foot pressure sway in children. International journal of Paediatric Otorhinolaryngogly. 1994, 29: 101-109. 10.1016/0165-5876(94)90089-2.CrossRef
7.
go back to reference MacWilliams BA, Cowley M, Nicholson DE: Foot kinematics and kinetics during adolescent gait. Gait and Posture. 2003, 17: 214-224.CrossRefPubMed MacWilliams BA, Cowley M, Nicholson DE: Foot kinematics and kinetics during adolescent gait. Gait and Posture. 2003, 17: 214-224.CrossRefPubMed
8.
go back to reference Fuller EA: Centre of pressure and its relationship to foot pathology. Journal of American Podiatric Medical Association. 1999, 89 (6): 278-291.CrossRef Fuller EA: Centre of pressure and its relationship to foot pathology. Journal of American Podiatric Medical Association. 1999, 89 (6): 278-291.CrossRef
9.
go back to reference Scherer PR, Sobiesk GA: The centre of pressure index in the evaluation of foot orthoses in shoes. Clinics in podiatric medicine and surgery. 1994, 11 (2): 355-363.PubMed Scherer PR, Sobiesk GA: The centre of pressure index in the evaluation of foot orthoses in shoes. Clinics in podiatric medicine and surgery. 1994, 11 (2): 355-363.PubMed
10.
go back to reference Sloss R: The effects of foot orthoses on the ground reaction forces during walking. Part 1. The Foot. 2002, 11: 205-214. 10.1054/foot.2001.0713.CrossRef Sloss R: The effects of foot orthoses on the ground reaction forces during walking. Part 1. The Foot. 2002, 11: 205-214. 10.1054/foot.2001.0713.CrossRef
11.
go back to reference Chockalingam Nachiappan, Dangerfield Peter, Rahmatalla Aziz, Ahmed El-Nasri, Cochrane Tom: Assessment of ground reaction force during scoliotic gait. European Spine Journal. 2004, 13 (8): 750-754. 10.1007/s00586-004-0762-9.CrossRefPubMedPubMedCentral Chockalingam Nachiappan, Dangerfield Peter, Rahmatalla Aziz, Ahmed El-Nasri, Cochrane Tom: Assessment of ground reaction force during scoliotic gait. European Spine Journal. 2004, 13 (8): 750-754. 10.1007/s00586-004-0762-9.CrossRefPubMedPubMedCentral
12.
go back to reference White AA, Panjabi MM: Clinical Biomechanics of the Spine. 1990, Philadelphia. J B Lippincott Company, 2 White AA, Panjabi MM: Clinical Biomechanics of the Spine. 1990, Philadelphia. J B Lippincott Company, 2
13.
go back to reference Burwell RG, Dangerfield PH: Adolescent Idiopathic Scoliosis: Hypotheses of causation. Etiology of adolescent idiopathic scoliosis. State of the Art Reviews 14. Edited by: Burwell RG, Dangerfield PH, Thomas GL, Margulies JY. 2000, Hanley and Belfus Inc. USA, 319-334. Burwell RG, Dangerfield PH: Adolescent Idiopathic Scoliosis: Hypotheses of causation. Etiology of adolescent idiopathic scoliosis. State of the Art Reviews 14. Edited by: Burwell RG, Dangerfield PH, Thomas GL, Margulies JY. 2000, Hanley and Belfus Inc. USA, 319-334.
14.
go back to reference Burwell RG, Kirby AS, Cole AA, Webb JK, Moulton A, Cavdar S: Torsion in lower limb bones of children screened for adolescent idiopathic scoliosis. Research into Spinal Deformities. Edited by: Sevastik JA, Diab KM. 1997, IOS Press. Amsterdam, 57-61. Burwell RG, Kirby AS, Cole AA, Webb JK, Moulton A, Cavdar S: Torsion in lower limb bones of children screened for adolescent idiopathic scoliosis. Research into Spinal Deformities. Edited by: Sevastik JA, Diab KM. 1997, IOS Press. Amsterdam, 57-61.
15.
go back to reference Hatze H: Motion variability – its definition, quantification and origin. J Mot Behav. 1986, 18 (1): 5-16.CrossRefPubMed Hatze H: Motion variability – its definition, quantification and origin. J Mot Behav. 1986, 18 (1): 5-16.CrossRefPubMed
16.
go back to reference Kim CM, Eng JJ: Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait and Posture. 2003, 18: 23-28. 10.1016/S0966-6362(02)00122-4.CrossRefPubMed Kim CM, Eng JJ: Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait and Posture. 2003, 18: 23-28. 10.1016/S0966-6362(02)00122-4.CrossRefPubMed
17.
go back to reference Lafond D, Duarte M, Prince F: Comparison of three methods to estimate the centre of mass during balance assessment. Journal of Biomechanics. 2004, 37: 1421-1426. 10.1016/S0021-9290(03)00251-3.CrossRefPubMed Lafond D, Duarte M, Prince F: Comparison of three methods to estimate the centre of mass during balance assessment. Journal of Biomechanics. 2004, 37: 1421-1426. 10.1016/S0021-9290(03)00251-3.CrossRefPubMed
18.
go back to reference McKinon W, Hartford C, Di Zio L, van Schalkwyk J, Veliotes D, Hofmeyr A, Rogers G: The agreement between reaction-board measurements and kinematic estimation of adult male human whole body centre of mass location during running. Physiological Measurement. 2004, 25: 1339-1354. 10.1088/0967-3334/25/6/001.CrossRefPubMed McKinon W, Hartford C, Di Zio L, van Schalkwyk J, Veliotes D, Hofmeyr A, Rogers G: The agreement between reaction-board measurements and kinematic estimation of adult male human whole body centre of mass location during running. Physiological Measurement. 2004, 25: 1339-1354. 10.1088/0967-3334/25/6/001.CrossRefPubMed
19.
go back to reference Gard SA, Miff SC, Kuo AD: Comparison of kinematic and kinetic methods for computing the vertical motion of the body centre of mass during walking. Human Movement Science. 2004, 22: 597-610. 10.1016/j.humov.2003.11.002.CrossRefPubMed Gard SA, Miff SC, Kuo AD: Comparison of kinematic and kinetic methods for computing the vertical motion of the body centre of mass during walking. Human Movement Science. 2004, 22: 597-610. 10.1016/j.humov.2003.11.002.CrossRefPubMed
20.
go back to reference Toussaint HM, Commissaris DACM, Hoozemans MJM, Ober MJ, Beek PJ: Anticipatory postural adjustments before load pickup in a bi-manual whole body liftng task. Med Sci Sports Exerc. 1997, 29 (9): 1208-1215.CrossRefPubMed Toussaint HM, Commissaris DACM, Hoozemans MJM, Ober MJ, Beek PJ: Anticipatory postural adjustments before load pickup in a bi-manual whole body liftng task. Med Sci Sports Exerc. 1997, 29 (9): 1208-1215.CrossRefPubMed
21.
go back to reference Martin M, Shinberg M, Kuchibhatla M, Ray L, Carollo JJ, Schenkman ML: Gait Initiation in community deweeling adults with Parkinson disease: Comaprison with older and younger adults without the disease. Physical Therapy. 2002, 82 (6): 566-577.PubMed Martin M, Shinberg M, Kuchibhatla M, Ray L, Carollo JJ, Schenkman ML: Gait Initiation in community deweeling adults with Parkinson disease: Comaprison with older and younger adults without the disease. Physical Therapy. 2002, 82 (6): 566-577.PubMed
22.
go back to reference Nault M-L, Allard P, Hinse S, Blanc RL, Caron O, Labelle H, Sadeghi H: Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine. 2002, 27 (17): 1911-1917. 10.1097/00007632-200209010-00018.CrossRefPubMed Nault M-L, Allard P, Hinse S, Blanc RL, Caron O, Labelle H, Sadeghi H: Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine. 2002, 27 (17): 1911-1917. 10.1097/00007632-200209010-00018.CrossRefPubMed
23.
go back to reference Gefen A, Megido-Ravid M, Itzchak Y, Arcan M: Analysis of muscular fatigue and foot stability during high heeled gait. Gait and Posture. 2002, 15: 56-63. 10.1016/S0966-6362(01)00180-1.CrossRefPubMed Gefen A, Megido-Ravid M, Itzchak Y, Arcan M: Analysis of muscular fatigue and foot stability during high heeled gait. Gait and Posture. 2002, 15: 56-63. 10.1016/S0966-6362(01)00180-1.CrossRefPubMed
24.
go back to reference Kim K-J, Uchiyama E, Kitaoka HB, An K-N: An in-vitro study of individual ankle muscle actions on the centre of pressure. Gait and Posture. 2003, 17: 125-131. 10.1016/S0966-6362(02)00063-2.CrossRefPubMed Kim K-J, Uchiyama E, Kitaoka HB, An K-N: An in-vitro study of individual ankle muscle actions on the centre of pressure. Gait and Posture. 2003, 17: 125-131. 10.1016/S0966-6362(02)00063-2.CrossRefPubMed
25.
go back to reference Schmid M, Zambarbieri D, Verni G: The Pattern of Centre of Pressure during Walking in Lower Limb Amputee Subjects. 5th Annual gait and clinical movement analysis meeting, Mayo Clinic, Rochester, Minnesota, USA. 2000 Schmid M, Zambarbieri D, Verni G: The Pattern of Centre of Pressure during Walking in Lower Limb Amputee Subjects. 5th Annual gait and clinical movement analysis meeting, Mayo Clinic, Rochester, Minnesota, USA. 2000
26.
go back to reference Stokes IAF: Analysis of symmetry of vertebral body loading consequent of lateral spinal curvature. Spine. 1997, 22: 2495-2503. 10.1097/00007632-199711010-00006.CrossRefPubMed Stokes IAF: Analysis of symmetry of vertebral body loading consequent of lateral spinal curvature. Spine. 1997, 22: 2495-2503. 10.1097/00007632-199711010-00006.CrossRefPubMed
27.
go back to reference Herzog W, Nigg BM, Read LJ, Olsson E: Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc. 1989, 21 (1): 10-114.CrossRef Herzog W, Nigg BM, Read LJ, Olsson E: Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc. 1989, 21 (1): 10-114.CrossRef
28.
go back to reference Chockalingam Nachiappan, Giakas Giannis, Iossifidou Anna: Do strain gauge force platforms need in situ correction?. Gait and Posture. 2002, 16: 233-237. 10.1016/S0966-6362(02)00017-6.CrossRefPubMed Chockalingam Nachiappan, Giakas Giannis, Iossifidou Anna: Do strain gauge force platforms need in situ correction?. Gait and Posture. 2002, 16: 233-237. 10.1016/S0966-6362(02)00017-6.CrossRefPubMed
29.
go back to reference Stokes IAF: Scoliosis Research Society Working Group on 3D-Terminology of Spinal Deformity: Three dimensional terminology of spinal deformity. Spine. 1994, 19: 236-248.CrossRefPubMed Stokes IAF: Scoliosis Research Society Working Group on 3D-Terminology of Spinal Deformity: Three dimensional terminology of spinal deformity. Spine. 1994, 19: 236-248.CrossRefPubMed
30.
go back to reference Burstein AH, Wright TM: Fundamentals of Orthopaedic Biomechanics. 1994, Maryland: Williams & Wilkins Burstein AH, Wright TM: Fundamentals of Orthopaedic Biomechanics. 1994, Maryland: Williams & Wilkins
Metadata
Title
Assessment of the centre of pressure pattern and moments about S2 in scoliotic subjects during normal walking
Authors
Nachiappan Chockalingam
Surendra Bandi
Aziz Rahmatalla
Peter H Dangerfield
El-Nasri Ahmed
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2008
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/1748-7161-3-10

Other articles of this Issue 1/2008

Scoliosis and Spinal Disorders 1/2008 Go to the issue