Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 6/2018

01-06-2018 | Original Paper

Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo

Authors: Xinlei Wu, Clemens von Birgelen, Zehang Li, Su Zhang, Jiayue Huang, Fuyou Liang, Yingguang Li, William Wijns, Shengxian Tu

Published in: The International Journal of Cardiovascular Imaging | Issue 6/2018

Login to get access

Abstract

Cyclic biomechanical stress at the lumen-intima interface plays a crucial role in the rupture of coronary plaque. We performed a comprehensive assessment of a novel angiography-based method for four-dimensional (4D) dynamic assessment of superficial wall stress (SWS) and deformation with a total of 32 analyses in virtual stenosis models with equal lumen dimensions and 16 analyses in human coronary arteries in vivo. The in silico model analyses demonstrated that the SWS, derived by the proposed global displacement method without knowledge of plaque components or blood pressure, was comparable with the result calculated by traditional finite element method. Cardiac contraction-induced vessel deformation increased SWS. Softer plaque and positive arterial remodeling, associated with a greater plaque burden, showed more variation in mean lumen diameter within the cardiac cycle and resulted in higher SWS. In vivo patient analyses confirmed the accuracy of computed superficial wall deformation. The centerlines predicted by our method at random selected time instant matched well with the actual one in angiograms by Procrustes analysis (scaling: 0.995 ± 0.018; dissimilarity: 0.007 ± 0.014). Over 50% of the maximum SWS occurred at proximal plaque shoulders. This novel 4D approach could be successfully to predict superficial wall deformation of coronary artery in vivo. The dynamic SWS might be more realistic to evaluate the risk of plaque rupture.
Appendix
Available only for authorised users
Literature
3.
go back to reference Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13(4):210–220CrossRefPubMed Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol 13(4):210–220CrossRefPubMed
4.
go back to reference Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293(3):H1987–H1996. https://doi.org/10.1152/ajpheart.00018.2007 CrossRefPubMed Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293(3):H1987–H1996. https://​doi.​org/​10.​1152/​ajpheart.​00018.​2007 CrossRefPubMed
5.
go back to reference Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NE, Gillard JH, Teng Z, Bennett MR (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovascular Imaging 10:1472CrossRefPubMedPubMedCentral Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NE, Gillard JH, Teng Z, Bennett MR (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovascular Imaging 10:1472CrossRefPubMedPubMedCentral
6.
go back to reference Teng Z, Brown AJ, Calvert PA, Parker RA, Obaid DR, Huang Y, Hoole SP, West NE, Gillard JH, Bennett MR (2014) Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study. Circ Cardiovasc Imaging 7(3):461–470CrossRefPubMed Teng Z, Brown AJ, Calvert PA, Parker RA, Obaid DR, Huang Y, Hoole SP, West NE, Gillard JH, Bennett MR (2014) Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study. Circ Cardiovasc Imaging 7(3):461–470CrossRefPubMed
8.
go back to reference Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, Rioufol G, Kotys MS, Elagha A, Pettigrew RI (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol-Heart Circ 295(2):H717–H727. https://doi.org/10.1152/ajpheart.00005.2008 CrossRef Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, Rioufol G, Kotys MS, Elagha A, Pettigrew RI (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol-Heart Circ 295(2):H717–H727. https://​doi.​org/​10.​1152/​ajpheart.​00005.​2008 CrossRef
9.
go back to reference Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol-Heart Circ 293(3):H1987–H1996. https://doi.org/10.1152/ajpheart.00018.2007 CrossRef Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol-Heart Circ 293(3):H1987–H1996. https://​doi.​org/​10.​1152/​ajpheart.​00018.​2007 CrossRef
10.
go back to reference Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056CrossRefPubMed Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056CrossRefPubMed
11.
go back to reference Loree HM, Kamm R, Stringfellow R, Lee R (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71(4):850–858CrossRefPubMed Loree HM, Kamm R, Stringfellow R, Lee R (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71(4):850–858CrossRefPubMed
12.
go back to reference Wu X, von Birgelen C, Muramatsu T, Li Y, Holm NR, Reiber JHC, Tu S (2017) A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. Eurointervention 13(9):1099–1103CrossRef Wu X, von Birgelen C, Muramatsu T, Li Y, Holm NR, Reiber JHC, Tu S (2017) A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. Eurointervention 13(9):1099–1103CrossRef
14.
go back to reference von Birgelen C, Airiian SG, Mintz GS, vanderGiessen WJ, Foley DP, Roelandt JTRC., Serruys PW, deFeyter PJ (1997) Variations of remodeling in response to left main atherosclerosis assessed with intravascular ultrasound in vivo. Am J Cardiol 80(11):1408–1413CrossRef von Birgelen C, Airiian SG, Mintz GS, vanderGiessen WJ, Foley DP, Roelandt JTRC., Serruys PW, deFeyter PJ (1997) Variations of remodeling in response to left main atherosclerosis assessed with intravascular ultrasound in vivo. Am J Cardiol 80(11):1408–1413CrossRef
15.
go back to reference Tu S, Westra J, Yang J, Von BC, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR Pilot Study. JACC Cardiovasc Interv 9(19):2024–2035CrossRefPubMed Tu S, Westra J, Yang J, Von BC, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR Pilot Study. JACC Cardiovasc Interv 9(19):2024–2035CrossRefPubMed
16.
go back to reference Austen W, Edwards J, Frye R, Gensini G, Gott V, Griffith L, McGoon D, Murphy M, Roe B (1975) A reporting system on patients evaluated for coronary artery disease. report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4):5–40. https://doi.org/10.1161/01.cir.51.4.5 CrossRefPubMed Austen W, Edwards J, Frye R, Gensini G, Gott V, Griffith L, McGoon D, Murphy M, Roe B (1975) A reporting system on patients evaluated for coronary artery disease. report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4):5–40. https://​doi.​org/​10.​1161/​01.​cir.​51.​4.​5 CrossRefPubMed
18.
go back to reference Lee RT, Kamm RD (1994) Vascular mechanics for the cardiologist. J Am Coll Cardiol 23(6):1289–1295CrossRefPubMed Lee RT, Kamm RD (1994) Vascular mechanics for the cardiologist. J Am Coll Cardiol 23(6):1289–1295CrossRefPubMed
19.
go back to reference Pao YC, Lu JT, Ritman EL (1992) Bending and twisting of an in vivo coronary artery at a bifurcation. J Biomech 25(3):287–295CrossRefPubMed Pao YC, Lu JT, Ritman EL (1992) Bending and twisting of an in vivo coronary artery at a bifurcation. J Biomech 25(3):287–295CrossRefPubMed
23.
go back to reference Yang C, Tang D, Kobayashi S, Zheng J, Woodard PK, Teng Z, Bach R, Ku DN (2008) Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: in vitro experimental modeling and ex vivo MRI-based computational modeling approach. Mol Cell Biomech 5 (4):259PubMedPubMedCentral Yang C, Tang D, Kobayashi S, Zheng J, Woodard PK, Teng Z, Bach R, Ku DN (2008) Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: in vitro experimental modeling and ex vivo MRI-based computational modeling approach. Mol Cell Biomech 5 (4):259PubMedPubMedCentral
24.
go back to reference von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, Baumgart D, Haude M, Wieneke H, Ge J, Erbel R (2001) Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: An intravascular ultrasound study in vivo. J Am Coll Cardiol 37(7):1864–1870. https://doi.org/10.1016/S0735-1097(01)01234-7 CrossRef von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, Baumgart D, Haude M, Wieneke H, Ge J, Erbel R (2001) Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: An intravascular ultrasound study in vivo. J Am Coll Cardiol 37(7):1864–1870. https://​doi.​org/​10.​1016/​S0735-1097(01)01234-7 CrossRef
25.
go back to reference Maehara A, Mintz GS, Bui AB, Walter OR, Castagna MT, Canos D, Pichard AD, Satler LF, Waksman R, Suddath WO (2002) Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol 40(5):904–910CrossRefPubMed Maehara A, Mintz GS, Bui AB, Walter OR, Castagna MT, Canos D, Pichard AD, Satler LF, Waksman R, Suddath WO (2002) Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol 40(5):904–910CrossRefPubMed
26.
27.
go back to reference Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92(5):1355–1374CrossRefPubMed Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92(5):1355–1374CrossRefPubMed
Metadata
Title
Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo
Authors
Xinlei Wu
Clemens von Birgelen
Zehang Li
Su Zhang
Jiayue Huang
Fuyou Liang
Yingguang Li
William Wijns
Shengxian Tu
Publication date
01-06-2018
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 6/2018
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-018-1311-7

Other articles of this Issue 6/2018

The International Journal of Cardiovascular Imaging 6/2018 Go to the issue