Skip to main content
Top
Published in: Systematic Reviews 1/2016

Open Access 01-12-2016 | Protocol

Assessing the validity of abbreviated literature searches for rapid reviews: protocol of a non-inferiority and meta-epidemiologic study

Authors: Barbara Nussbaumer-Streit, Irma Klerings, Gernot Wagner, Viktoria Titscher, Gerald Gartlehner

Published in: Systematic Reviews | Issue 1/2016

Login to get access

Abstract

Background

Systematic reviews offer the most reliable and valid support for health policy decision-making, patient information, and guideline development. However, they are labor intensive and frequently take longer than 1 year to complete. Consequently, they often do not meet the needs of those who need to make decisions quickly. Rapid reviews have therefore become a pragmatic alternative to systematic reviews. They are knowledge syntheses that abbreviate certain methodological aspects of systematic reviews to produce information more quickly. Methodological shortcuts often take place in literature identification. A potential drawback is less reliable results. To date, the impact of abbreviated searches on estimates of treatment effects and subsequent conclusions has not been analyzed systematically across multiple bodies of evidence. We aim to answer the research question: Do bodies of evidence that are based on abbreviated literature searches lead to different conclusions about benefits and harms of interventions compared with bodies of evidence that are based on comprehensive, systematic literature searches?

Methods

We will use a non-inferiority and meta-epidemiologic design. The primary outcome is the proportion of discordant conclusions based on different search approaches. Drawing of a pool of Cochrane reports published between 2012 and 2016, we will randomly select 60 reports. Eligible reports are those that present a summary-of-findings table, draw a clear conclusion, present data for meta-analyses, and document the search strategy clearly. We will conduct several abbreviated searches to detect whether included studies in these Cochrane reviews could be detected. If searches could not detect all studies, we will revise the original summary-of-findings table and ask review authors whether the missed evidence would change conclusions of their report. We will determine the proportion of discordant conclusions for each abbreviated search approach. We will consider an abbreviated search as non-inferior if the lower limit of the 95% confidence interval of the proportion of discordant conclusions is below the non-inferiority margin, which is determined based on results of a survey for clinical and public health scenarios.

Discussion

This will be the first study to assess whether the reduced sensitivity of abbreviated searches has an impact on conclusions across multiple bodies of evidence, not only on effect estimates.
Literature
1.
go back to reference Ganann R, Ciliska D, Thomas H. Expediting systematic reviews: methods and implications of rapid reviews. Implement Sci. 2010;5:56. Pubmed Central PMCID: PMC2914085, Epub 2010/07/21. eng.CrossRefPubMedPubMedCentral Ganann R, Ciliska D, Thomas H. Expediting systematic reviews: methods and implications of rapid reviews. Implement Sci. 2010;5:56. Pubmed Central PMCID: PMC2914085, Epub 2010/07/21. eng.CrossRefPubMedPubMedCentral
4.
go back to reference Tricco AC, Zarin W, Antony J, Hutton B, Moher D, Sherifali D, et al. An international survey and modified Delphi approach revealed numerous rapid review methods. J Clin Epidemiol. 2015. Aug 29. Epub 2015/09/04. Eng. Tricco AC, Zarin W, Antony J, Hutton B, Moher D, Sherifali D, et al. An international survey and modified Delphi approach revealed numerous rapid review methods. J Clin Epidemiol. 2015. Aug 29. Epub 2015/09/04. Eng.
5.
go back to reference Polisena J, Garritty C, Umscheid CA, Kamel C, Samra K, Smith J, et al. Rapid Review Summit: an overview and initiation of a research agenda. Syst Rev. 2015;4:111. Pubmed Central PMCID: PMC4583747, Epub 2015/09/27. eng.CrossRefPubMedPubMedCentral Polisena J, Garritty C, Umscheid CA, Kamel C, Samra K, Smith J, et al. Rapid Review Summit: an overview and initiation of a research agenda. Syst Rev. 2015;4:111. Pubmed Central PMCID: PMC4583747, Epub 2015/09/27. eng.CrossRefPubMedPubMedCentral
6.
go back to reference Cameron A, et al. Rapid versus full systematic reviews: an inventory of current methods and practice in Health Technology Assessment. ASERNIP-S Report No. 60. Adelaide: ASERNIP-S.; 2007. Cameron A, et al. Rapid versus full systematic reviews: an inventory of current methods and practice in Health Technology Assessment. ASERNIP-S Report No. 60. Adelaide: ASERNIP-S.; 2007.
7.
go back to reference Corabian P, Harstall C. Rapid assessments provide acceptable quality advice. Annu Meet Int Soc Technol Assess Health Care Int Soc Technol Assess Health Care Meet. 2002;18:Abstract 70. Corabian P, Harstall C. Rapid assessments provide acceptable quality advice. Annu Meet Int Soc Technol Assess Health Care Int Soc Technol Assess Health Care Meet. 2002;18:Abstract 70.
8.
go back to reference Van de Velde S, De Buck E, Dieltjens T, Aertgeerts B. Medicinal use of potato-derived products: conclusions of a rapid versus full systematic review. Phytother Res. 2011;25(5):787–8. Epub 2010/11/27. eng.CrossRefPubMed Van de Velde S, De Buck E, Dieltjens T, Aertgeerts B. Medicinal use of potato-derived products: conclusions of a rapid versus full systematic review. Phytother Res. 2011;25(5):787–8. Epub 2010/11/27. eng.CrossRefPubMed
9.
go back to reference Tricco AC, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, et al. A scoping review of rapid review methods. BMC Med. 2015;13:224. Pubmed Central PMCID: PMC4574114, Epub 2015/09/18. eng.CrossRefPubMedPubMedCentral Tricco AC, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, et al. A scoping review of rapid review methods. BMC Med. 2015;13:224. Pubmed Central PMCID: PMC4574114, Epub 2015/09/18. eng.CrossRefPubMedPubMedCentral
10.
go back to reference Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. JAMA. 2009;302(10):1092–6.CrossRefPubMed Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. JAMA. 2009;302(10):1092–6.CrossRefPubMed
11.
go back to reference Egger M, Juni P, Bartlett C, Holestein F, Sterne J. How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. Health Technol Assess. 2003;7(1):1–76.PubMed Egger M, Juni P, Bartlett C, Holestein F, Sterne J. How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. Health Technol Assess. 2003;7(1):1–76.PubMed
12.
go back to reference van Enst WA, Scholten RJ, Whiting P, Zwinderman AH, Hooft L. Meta-epidemiologic analysis indicates that MEDLINE searches are sufficient for diagnostic test accuracy systematic reviews. J Clin Epidemiol. 2014;67(11):1192–9. Epub 2014/07/06. eng.CrossRefPubMed van Enst WA, Scholten RJ, Whiting P, Zwinderman AH, Hooft L. Meta-epidemiologic analysis indicates that MEDLINE searches are sufficient for diagnostic test accuracy systematic reviews. J Clin Epidemiol. 2014;67(11):1192–9. Epub 2014/07/06. eng.CrossRefPubMed
13.
go back to reference Bayliss SE, Davenport CF, Pennant ME. Where and how to search for information on the effectiveness of public health interventions—a case study for prevention of cardiovascular disease. Health Info Libr J. 2014;31(4):303–13. Epub 2014/08/20. eng.CrossRefPubMed Bayliss SE, Davenport CF, Pennant ME. Where and how to search for information on the effectiveness of public health interventions—a case study for prevention of cardiovascular disease. Health Info Libr J. 2014;31(4):303–13. Epub 2014/08/20. eng.CrossRefPubMed
14.
go back to reference Halladay CW, Trikalinos TA, Schmid IT, Schmid CH, Dahabreh IJ. Using data sources beyond PubMed has a modest impact on the results of systematic reviews of therapeutic interventions. J Clin Epidemiol. 2015;68(9):1076–84. Epub 2015/08/19. eng.CrossRefPubMed Halladay CW, Trikalinos TA, Schmid IT, Schmid CH, Dahabreh IJ. Using data sources beyond PubMed has a modest impact on the results of systematic reviews of therapeutic interventions. J Clin Epidemiol. 2015;68(9):1076–84. Epub 2015/08/19. eng.CrossRefPubMed
15.
go back to reference Westphal A, Kriston L, Holzel LP, Harter M, von Wolff A. Efficiency and contribution of strategies for finding randomized controlled trials: a case study from a systematic review on therapeutic interventions of chronic depression. Public Health Res. 2014;3(2):177. Pubmed Central PMCID: PMC4207021, Epub 2014/10/25. eng. Westphal A, Kriston L, Holzel LP, Harter M, von Wolff A. Efficiency and contribution of strategies for finding randomized controlled trials: a case study from a systematic review on therapeutic interventions of chronic depression. Public Health Res. 2014;3(2):177. Pubmed Central PMCID: PMC4207021, Epub 2014/10/25. eng.
16.
go back to reference Lemeshow AR, Blum RE, Berlin JA, Stoto MA, Colditz GA. Searching one or two databases was insufficient for meta-analysis of observational studies. J Clin Epidemiol. 2005;58(9):867–73.CrossRefPubMed Lemeshow AR, Blum RE, Berlin JA, Stoto MA, Colditz GA. Searching one or two databases was insufficient for meta-analysis of observational studies. J Clin Epidemiol. 2005;58(9):867–73.CrossRefPubMed
17.
go back to reference Shojania KG, Sampson M, Ansari MT, et al. Updating Systematic Reviews. Technical Review No. 16. (Prepared by the University of Ottawa Evidence-based Practice Center under Contract No. 290-02-0017.) AHRQ Publication No. 07-0087. Rockville: Agency for Healthcare Research and Quality; 2007. https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0067949/. Accessed 4 Oct 2016. Shojania KG, Sampson M, Ansari MT, et al. Updating Systematic Reviews. Technical Review No. 16. (Prepared by the University of Ottawa Evidence-based Practice Center under Contract No. 290-02-0017.) AHRQ Publication No. 07-0087. Rockville: Agency for Healthcare Research and Quality; 2007. https://​www.​ncbi.​nlm.​nih.​gov/​pubmedhealth/​PMH0067949/​. Accessed 4 Oct 2016.
18.
go back to reference Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10(1):1–10.CrossRefPubMed Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10(1):1–10.CrossRefPubMed
20.
go back to reference Bramer WM, Giustini D, Kramer BMR. Comparing the coverage, recall, and precision of searches for 120 systematic reviews in Embase, MEDLINE, and Google Scholar: a prospective study. Syst Rev. 2016;5:39. 10.1186/s13643-016-0215-7.CrossRefPubMedPubMedCentral Bramer WM, Giustini D, Kramer BMR. Comparing the coverage, recall, and precision of searches for 120 systematic reviews in Embase, MEDLINE, and Google Scholar: a prospective study. Syst Rev. 2016;5:39. 10.1186/s13643-016-0215-7.CrossRefPubMedPubMedCentral
21.
go back to reference Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M. Statistical methods for assessing the influence of study characteristics on treatment effects in ‘meta-epidemiological’ research. Stat Med. 2002;21(11):1513–24.CrossRefPubMed Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M. Statistical methods for assessing the influence of study characteristics on treatment effects in ‘meta-epidemiological’ research. Stat Med. 2002;21(11):1513–24.CrossRefPubMed
Metadata
Title
Assessing the validity of abbreviated literature searches for rapid reviews: protocol of a non-inferiority and meta-epidemiologic study
Authors
Barbara Nussbaumer-Streit
Irma Klerings
Gernot Wagner
Viktoria Titscher
Gerald Gartlehner
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2016
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-016-0380-8

Other articles of this Issue 1/2016

Systematic Reviews 1/2016 Go to the issue